2.14.21.21 problem 2021 out of 2993

Link to actual problem [9539] \[ \boxed {x^{2} y^{\prime \prime }-2 x \left (x^{2}-a \right ) y^{\prime }+\left (2 n \,x^{2}+\left (\left (-1\right )^{n}-1\right ) a \right ) y=0} \]

type detected by program

{"unknown"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= x^{-a -\frac {1}{2}} {\mathrm e}^{\frac {x^{2}}{2}} \operatorname {WhittakerM}\left (\frac {a}{2}+\frac {n}{2}+\frac {1}{4}, \frac {\sqrt {1-4 a \left (\left (-1\right )^{n}-a \right )}}{4}, x^{2}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{-\frac {x^{2}}{2}} x^{a} \sqrt {x}\, y}{\operatorname {WhittakerM}\left (\frac {a}{2}+\frac {n}{2}+\frac {1}{4}, \frac {\sqrt {1-4 a \left (-1\right )^{n}+4 a^{2}}}{4}, x^{2}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= x^{-a -\frac {1}{2}} {\mathrm e}^{\frac {x^{2}}{2}} \operatorname {WhittakerW}\left (\frac {a}{2}+\frac {n}{2}+\frac {1}{4}, \frac {\sqrt {1-4 a \left (\left (-1\right )^{n}-a \right )}}{4}, x^{2}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{-\frac {x^{2}}{2}} x^{a} \sqrt {x}\, y}{\operatorname {WhittakerW}\left (\frac {a}{2}+\frac {n}{2}+\frac {1}{4}, \frac {\sqrt {1-4 a \left (-1\right )^{n}+4 a^{2}}}{4}, x^{2}\right )}\right ] \\ \end{align*}