2.14.21.80 problem 2080 out of 2993

Link to actual problem [9638] \[ \boxed {x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 x^{2}+1\right ) y^{\prime }-v \left (v +1\right ) x y=0} \]

type detected by program

{"unknown"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \operatorname {hypergeom}\left (\left [-\frac {v}{2}, \frac {1}{2}+\frac {v}{2}\right ], \left [\frac {1}{2}\right ], x^{2}+1\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\operatorname {hypergeom}\left (\left [-\frac {v}{2}, \frac {1}{2}+\frac {v}{2}\right ], \left [\frac {1}{2}\right ], x^{2}+1\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \sqrt {x^{2}+1}\, \operatorname {hypergeom}\left (\left [1+\frac {v}{2}, \frac {1}{2}-\frac {v}{2}\right ], \left [\frac {3}{2}\right ], x^{2}+1\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\sqrt {x^{2}+1}\, \operatorname {hypergeom}\left (\left [1+\frac {v}{2}, \frac {1}{2}-\frac {v}{2}\right ], \left [\frac {3}{2}\right ], x^{2}+1\right )}\right ] \\ \end{align*}