2.14.22.58 problem 2158 out of 2993

Link to actual problem [9733] \[ \boxed {y^{\prime \prime }+\frac {27 x y}{16 \left (x^{3}-1\right )^{2}}=0} \]

type detected by program

{"kovacic", "second_order_bessel_ode"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \sqrt {x}\, \left (x^{3}-1\right )^{\frac {1}{4}} \operatorname {LegendreP}\left (-\frac {1}{6}, \frac {1}{3}, \sqrt {-x^{3}+1}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\sqrt {x}\, \left (x^{3}-1\right )^{\frac {1}{4}} \operatorname {LegendreP}\left (-\frac {1}{6}, \frac {1}{3}, \sqrt {-x^{3}+1}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \sqrt {x}\, \left (x^{3}-1\right )^{\frac {1}{4}} \operatorname {LegendreQ}\left (-\frac {1}{6}, \frac {1}{3}, \sqrt {-x^{3}+1}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\sqrt {x}\, \left (x^{3}-1\right )^{\frac {1}{4}} \operatorname {LegendreQ}\left (-\frac {1}{6}, \frac {1}{3}, \sqrt {-x^{3}+1}\right )}\right ] \\ \end{align*}