2.2.34 Problems 3301 to 3400

Table 2.69: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

3301

4x2yy+xy2=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.913

3302

2x2y+y2=x3y

[[_1st_order, _with_linear_symmetries]]

2.175

3303

yy2=3yx+y

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

51.696

3304

8x+1=yy2

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

1.316

3305

yy2+2y+1=0

[_quadrature]

2.807

3306

(1+y2)x=(x+y)y

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.120

3307

x23yy+xy2=0

[[_homogeneous, ‘class G‘], _rational]

4.736

3308

2yx+y=xy2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.588

3309

x=y2+y

[_quadrature]

0.323

3310

x=yy3

[[_homogeneous, ‘class C‘], _dAlembert]

0.637

3311

x+2yy=xy2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.266

3312

4x2yy+xy2=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.684

3313

xy3=yy+1

[_dAlembert]

0.317

3314

y(1+y2)=2yx

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.989

3315

2x+xy2=2yy

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.782

3316

x=yy+y2

[_dAlembert]

1.733

3317

4xy2+2yx=y

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

36.821

3318

y=yx(y+1)

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.234

3319

2xy3+1=yy2

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.643

3320

y3+xyy=2y2

[[_1st_order, _with_linear_symmetries]]

8.780

3321

3y4x=yy3+1

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.681

3322

2y5+2yx=y

[_dAlembert]

0.908

3323

1y2+yx=2y

[[_1st_order, _with_linear_symmetries], _dAlembert]

23.898

3324

2y=3yx+4+2ln(y)

[[_1st_order, _with_linear_symmetries], _dAlembert]

45.154

3325

y=yx+y2

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.493

3326

y=yx+1y

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.541

3327

y=yxy

[[_homogeneous, ‘class G‘], _Clairaut]

0.988

3328

y=yx+ln(y)

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.252

3329

y=yx+3y2

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.686

3330

y=yxy2/3

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.555

3331

y=yx+ey

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.404

3332

(yyx)2=1+y2

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.693

3333

xy2yy2=0

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.545

3334

y22xyy+y2(x21)=0

[_separable]

0.548

3335

y=1y
i.c.

[_quadrature]

0.214

3336

y=xyx2
i.c.

[_linear]

0.431

3337

y=x2y2
i.c.

[_separable]

0.250

3338

y=3x+yx
i.c.

[_linear]

0.432

3339

y=ln(xy)
i.c.

[‘y=_G(x,y’)‘]

0.368

3340

y=1+y2
i.c.

[_quadrature]

0.325

3341

y=x2+y2
i.c.

[[_Riccati, _special]]

0.375

3342

y=xy+1
i.c.

[‘y=_G(x,y’)‘]

0.283

3343

y=cos(x)+sin(y)
i.c.

[‘y=_G(x,y’)‘]

0.367

3344

yy=sin(x)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.538

3345

y2y=e2x
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.566

3346

y+2yy=0
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.292

3347

y=sin(y)
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.615

3348

y+y22y=0
i.c.

[[_2nd_order, _missing_x]]

0.348

3349

y=sin(xy)
i.c.

[NONE]

0.922

3350

y=cos(xy)
i.c.

[NONE]

0.986

3351

2xy+5y+xy=0

[[_2nd_order, _with_linear_symmetries]]

0.617

3352

3x(3x+2)y4y+4y=0

[[_2nd_order, _with_linear_symmetries]]

0.909

3353

x2(x+4)y+7yxy=0

[[_2nd_order, _with_linear_symmetries]]

0.886

3354

2x2y+(x2+x)yy=0

[[_2nd_order, _with_linear_symmetries]]

0.740

3355

2x2y+5yx+(x+1)y=0

[[_2nd_order, _with_linear_symmetries]]

0.807

3356

9x2y+(3x+2)y=0

[[_2nd_order, _with_linear_symmetries]]

0.821

3357

(x3+2x2)yyx+(1x)y=0

[[_2nd_order, _with_linear_symmetries]]

0.900

3358

2x2y3(x2+x)y+(3x+2)y=0

[[_2nd_order, _with_linear_symmetries]]

0.775

3359

3x2y+(x2+5x)y+(2x21)y=0

[[_2nd_order, _with_linear_symmetries]]

0.918

3360

4x2y+x(x24)y+3y=0

[[_2nd_order, _with_linear_symmetries]]

0.788

3361

4x2y3(x2+x)y+2y=0

[[_2nd_order, _with_linear_symmetries]]

1.152

3362

9x2y+9(x2+x)y+(x1)y=0

[[_2nd_order, _with_linear_symmetries]]

0.882

3363

4x2(1x)y+3x(2x+1)y3y=0

[[_2nd_order, _with_linear_symmetries]]

0.878

3364

2x2(13x)y+5yx2y=0

[[_2nd_order, _with_linear_symmetries]]

0.873

3365

4x2(x+1)y5yx+2y=0

[[_2nd_order, _with_linear_symmetries]]

0.870

3366

x2(x+4)y+x(x1)y+y=0

[[_2nd_order, _with_linear_symmetries]]

0.875

3367

(8x)x2y+6yxy=0

[[_2nd_order, _with_linear_symmetries]]

0.900

3368

2x2y+x(x2+1)y(x+1)y=0

[[_2nd_order, _with_linear_symmetries]]

0.862

3369

2x2yyx+(x2+1)y=0

[[_2nd_order, _with_linear_symmetries]]

0.704

3370

3x2y+2yx+(x22)y=0

[[_2nd_order, _with_linear_symmetries]]

0.697

3371

x3(x2+3)y+5yx(x+1)y=0

[[_2nd_order, _with_linear_symmetries]]

0.203

3372

2xy(x3+1)y+y=0

[[_2nd_order, _with_linear_symmetries]]

0.822

3373

xy+y+2y=0

[[_Emden, _Fowler]]

0.595

3374

xy+y+2xy=0

[[_2nd_order, _with_linear_symmetries]]

0.599

3375

x2y3yx+4(x+1)y=0

[[_2nd_order, _with_linear_symmetries]]

0.698

3376

x2yx(x+1)y+y=0

[[_2nd_order, _with_linear_symmetries]]

0.695

3377

x2yx(2x+3)y+4y=0

[[_2nd_order, _with_linear_symmetries]]

0.741

3378

x2(x2+1)y5yx+9y=0

[[_2nd_order, _with_linear_symmetries]]

0.651

3379

x2y+x(x21)y+(x2+1)y=0

[[_2nd_order, _with_linear_symmetries]]

0.699

3380

x2y+x(2x1)y+x(x1)y=0

[[_2nd_order, _with_linear_symmetries]]

0.962

3381

x2yx2y+(x22)y=0

[[_2nd_order, _with_linear_symmetries]]

0.792

3382

x2y+2x2y(3x2+2)y=0

[[_2nd_order, _with_linear_symmetries]]

0.845

3383

x2(1x)y+x(x+1)y9y=0

[[_2nd_order, _with_linear_symmetries]]

0.933

3384

(x2+x)y3y+2y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

0.750

3385

x2y+x(x7)y+(x+12)y=0

[[_2nd_order, _with_linear_symmetries]]

1.628

3386

x2(x+1)y+x(x4)y+4y=0

[[_2nd_order, _with_linear_symmetries]]

1.498

3387

x2y+x(x2+3)y3y=0

[[_2nd_order, _with_linear_symmetries]]

1.531

3388

xy+3yy=x

[[_2nd_order, _with_linear_symmetries]]

1.497

3389

xy+3yy=x

[[_2nd_order, _with_linear_symmetries]]

1.480

3390

xy+y2xy=x2

[[_2nd_order, _linear, _nonhomogeneous]]

0.661

3391

xyyx+y=x3

[[_2nd_order, _with_linear_symmetries]]

1.516

3392

(2x+1)y+4yx4y=x2x

[[_2nd_order, _with_linear_symmetries]]

0.538

3393

x2y+yx+(x+12)y=x2+x

[[_2nd_order, _linear, _nonhomogeneous]]

1.119

3394

x2(x+1)y+x(x2+3)y+y=2x2+x

[[_2nd_order, _linear, _nonhomogeneous]]

1.046

3395

3x2(x+1)y+x(5x)y+(2x21)y=x3+x

[[_2nd_order, _linear, _nonhomogeneous]]

1.260

3396

9x2y+(3x+2)y=x4+x2

[[_2nd_order, _linear, _nonhomogeneous]]

1.045

3397

9x2y+10yx+y=x1

[[_2nd_order, _with_linear_symmetries]]

0.711

3398

2x2y+(x2+x)yy=x3+1

[[_2nd_order, _linear, _nonhomogeneous]]

1.013

3399

(x2+1)y+2yx2y=6(x2+1)2

[[_2nd_order, _with_linear_symmetries]]

0.365

3400

(x2+2x)y(2x+2)y+2y=x2(x+2)2

[[_2nd_order, _with_linear_symmetries]]

1.062