2.2.34 Problems 3301 to 3400

Table 2.69: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

3301

\[ {}2 x^{2} y^{\prime \prime }+x \left (x^{2}+1\right ) y^{\prime }-\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.634

3302

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.971

3303

\[ {}3 x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.945

3304

\[ {}x^{3} \left (x^{2}+3\right ) y^{\prime \prime }+5 y^{\prime } x -\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.088

3305

\[ {}2 x y^{\prime \prime }-\left (x^{3}+1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.091

3306

\[ {}x y^{\prime \prime }+y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

0.955

3307

\[ {}x y^{\prime \prime }+y^{\prime }+2 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.842

3308

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.975

3309

\[ {}x^{2} y^{\prime \prime }-x \left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.996

3310

\[ {}x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.988

3311

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.894

3312

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}-1\right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.918

3313

\[ {}x^{2} y^{\prime \prime }+x \left (2 x -1\right ) y^{\prime }+x \left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.615

3314

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.067

3315

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-\left (3 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.636

3316

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-9 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.723

3317

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.042

3318

\[ {}x^{2} y^{\prime \prime }+x \left (x -7\right ) y^{\prime }+\left (x +12\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.255

3319

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (x -4\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.273

3320

\[ {}x^{2} y^{\prime \prime }+x \left (-x^{2}+3\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.134

3321

\[ {}x y^{\prime \prime }+3 y^{\prime }-y = x \]

[[_2nd_order, _with_linear_symmetries]]

2.282

3322

\[ {}x y^{\prime \prime }+3 y^{\prime }-y = x \]

[[_2nd_order, _with_linear_symmetries]]

2.219

3323

\[ {}x y^{\prime \prime }+y^{\prime }-2 y x = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.911

3324

\[ {}x y^{\prime \prime }-y^{\prime } x +y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

2.199

3325

\[ {}\left (1-2 x \right ) y^{\prime \prime }+4 y^{\prime } x -4 y = x^{2}-x \]

[[_2nd_order, _with_linear_symmetries]]

0.325

3326

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +12\right ) y = x^{2}+x \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.977

3327

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (x^{2}+3\right ) y^{\prime }+y = -2 x^{2}+x \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.208

3328

\[ {}3 x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y = -x^{3}+x \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.418

3329

\[ {}9 x^{2} y^{\prime \prime }+\left (2+3 x \right ) y = x^{4}+x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.145

3330

\[ {}9 x^{2} y^{\prime \prime }+10 y^{\prime } x +y = x -1 \]

[[_2nd_order, _with_linear_symmetries]]

0.996

3331

\[ {}2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y = x^{3}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.731

3332

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 6 \left (-x^{2}+1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

0.220

3333

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-\left (2+2 x \right ) y^{\prime }+2 y = x^{2} \left (x +2\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.886

3334

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y = x \left (x^{2}+x +1\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.770

3335

\[ {}\left (x^{3}+2 x^{2}\right ) y^{\prime \prime }-y^{\prime } x +\left (1-x \right ) y = x^{2} \left (x +1\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.936

3336

\[ {}y^{\prime } = 2 \]

[_quadrature]

0.235

3337

\[ {}y^{\prime } = 2 \,{\mathrm e}^{3 x} \]

[_quadrature]

0.147

3338

\[ {}y^{\prime } = \frac {2}{\sqrt {-x^{2}+1}} \]

[_quadrature]

0.685

3339

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

0.149

3340

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

0.646

3341

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

0.148

3342

\[ {}y^{\prime } = y x \]

[_separable]

1.839

3343

\[ {}y^{\prime } = x^{2} y^{2} \]

[_separable]

2.428

3344

\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \]

[_separable]

2.470

3345

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

1.553

3346

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

2.821

3347

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

1.687

3348

\[ {}{y^{\prime }}^{2}-3 y^{\prime }+2 = 0 \]

[_quadrature]

0.957

3349

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \]

[_quadrature]

0.181

3350

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

0.826

3351

\[ {}y^{\prime } = t^{2}+3 \]

[_quadrature]

0.129

3352

\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \]

[_quadrature]

0.720

3353

\[ {}y^{\prime } = \sin \left (3 t \right ) \]

[_quadrature]

0.182

3354

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]

[_quadrature]

0.180

3355

\[ {}y^{\prime } = \frac {t}{t^{2}+4} \]

[_quadrature]

0.687

3356

\[ {}y^{\prime } = \ln \left (t \right ) \]

[_quadrature]

0.131

3357

\[ {}y^{\prime } = \frac {t}{\sqrt {t}+1} \]

[_quadrature]

0.178

3358

\[ {}y^{\prime } = 2 y-4 \]
i.c.

[_quadrature]

0.976

3359

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

0.917

3360

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y} \]
i.c.

[_separable]

2.285

3361

\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \]
i.c.

[_quadrature]

0.247

3362

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]
i.c.

[_quadrature]

0.892

3363

\[ {}y^{\prime } = 8 \,{\mathrm e}^{4 t}+t \]
i.c.

[_quadrature]

0.240

3364

\[ {}y^{\prime } = \frac {y}{t} \]

[_separable]

1.918

3365

\[ {}y^{\prime } = -\frac {t}{y} \]

[_separable]

5.954

3366

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

1.030

3367

\[ {}y^{\prime } = y-1 \]

[_quadrature]

0.170

3368

\[ {}y^{\prime } = 1-y \]

[_quadrature]

0.806

3369

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

1.078

3370

\[ {}y^{\prime } = 1-y^{2} \]

[_quadrature]

0.217

3371

\[ {}y^{\prime } = \left (t^{2}+1\right ) y \]

[_separable]

1.920

3372

\[ {}y^{\prime } = -y \]

[_quadrature]

0.852

3373

\[ {}y^{\prime } = 2 y+{\mathrm e}^{-3 t} \]

[[_linear, ‘class A‘]]

1.190

3374

\[ {}y^{\prime } = 2 y+{\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

1.665

3375

\[ {}y^{\prime } = t -y \]

[[_linear, ‘class A‘]]

1.098

3376

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

[_linear]

2.169

3377

\[ {}y^{\prime } = y \tan \left (t \right )+\sec \left (t \right ) \]

[_linear]

2.208

3378

\[ {}y^{\prime } = \frac {2 t y}{t^{2}+1}+t +1 \]

[_linear]

2.394

3379

\[ {}y^{\prime } = y \tan \left (t \right )+\sec \left (t \right )^{3} \]

[_linear]

2.378

3380

\[ {}y^{\prime } = y \]
i.c.

[_quadrature]

1.001

3381

\[ {}y^{\prime } = 2 y \]
i.c.

[_quadrature]

1.135

3382

\[ {}t y^{\prime } = y+t^{3} \]
i.c.

[_linear]

2.128

3383

\[ {}y^{\prime } = -y \tan \left (t \right )+\sec \left (t \right ) \]
i.c.

[_linear]

2.409

3384

\[ {}y^{\prime } = \frac {2 y}{1+t} \]
i.c.

[_separable]

2.616

3385

\[ {}t y^{\prime } = -y+t^{3} \]
i.c.

[_linear]

2.171

3386

\[ {}y^{\prime }+4 \tan \left (2 t \right ) y = \tan \left (2 t \right ) \]
i.c.

[_separable]

3.601

3387

\[ {}t \ln \left (t \right ) y^{\prime } = t \ln \left (t \right )-y \]
i.c.

[_linear]

1.639

3388

\[ {}y^{\prime } = \frac {2 y}{-t^{2}+1}+3 \]
i.c.

[_linear]

2.296

3389

\[ {}y^{\prime } = -\cot \left (t \right ) y+6 \cos \left (t \right )^{2} \]
i.c.

[_linear]

3.000

3390

\[ {}y^{\prime }-x y^{3} = 0 \]

[_separable]

3.727

3391

\[ {}\frac {y^{\prime }}{\tan \left (x \right )}-\frac {y}{x^{2}+1} = 0 \]

[_separable]

4.263

3392

\[ {}x^{2} y^{\prime }+x y^{2} = 4 y^{2} \]

[_separable]

3.018

3393

\[ {}y \left (2 x^{2} y^{2}+1\right ) y^{\prime }+x \left (y^{4}+1\right ) = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.854

3394

\[ {}2 y^{\prime } x +3 x +y = 0 \]

[_linear]

7.181

3395

\[ {}\left (\cos \left (x \right )^{2}+y \sin \left (2 x \right )\right ) y^{\prime }+y^{2} = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

5.612

3396

\[ {}\left (-x^{2}+1\right ) y^{\prime }+4 y x = \left (-x^{2}+1\right )^{{3}/{2}} \]

[_linear]

8.431

3397

\[ {}y^{\prime }-y \cot \left (x \right )+\frac {1}{\sin \left (x \right )} = 0 \]

[_linear]

4.393

3398

\[ {}\left (x +y^{3}\right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _rational]

11.244

3399

\[ {}y^{\prime } = -\frac {2 x^{2}+y^{2}+x}{y x} \]

[_rational, _Bernoulli]

2.349

3400

\[ {}\left (-x +y\right ) y^{\prime }+2 x +3 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.168