2.14.24.47 problem 2347 out of 2993

Link to actual problem [10906] \[ \boxed {x y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (c -1\right ) \left (a x +b \right ) y=0} \]

type detected by program

{"second_order_change_of_variable_on_y_method_2"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= {\mathrm e}^{-\frac {x \left (x a +2 b \right )}{2}} \operatorname {HeunB}\left (c -1, \frac {b \sqrt {2}}{\sqrt {a}}, c -3, -\frac {\sqrt {2}\, b \left (c -2\right )}{\sqrt {a}}, \frac {\sqrt {2}\, \sqrt {a}\, x}{2}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{\frac {x \left (x a +2 b \right )}{2}} y}{\operatorname {HeunB}\left (c -1, \frac {b \sqrt {2}}{\sqrt {a}}, c -3, -\frac {\sqrt {2}\, b \left (c -2\right )}{\sqrt {a}}, \frac {\sqrt {2}\, \sqrt {a}\, x}{2}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= x^{-c +1} {\mathrm e}^{-\frac {x \left (x a +2 b \right )}{2}} \operatorname {HeunB}\left (-c +1, \frac {b \sqrt {2}}{\sqrt {a}}, c -3, -\frac {\sqrt {2}\, b \left (c -2\right )}{\sqrt {a}}, \frac {\sqrt {2}\, \sqrt {a}\, x}{2}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{c} {\mathrm e}^{\frac {x \left (x a +2 b \right )}{2}} y}{x \operatorname {HeunB}\left (-c +1, \frac {b \sqrt {2}}{\sqrt {a}}, c -3, -\frac {\sqrt {2}\, b \left (c -2\right )}{\sqrt {a}}, \frac {\sqrt {2}\, \sqrt {a}\, x}{2}\right )}\right ] \\ \end{align*}