2.2.36 Problems 3501 to 3600

Table 2.73: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

3501

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 9 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

2.378

3502

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12.974

3503

\[ {}y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y = 0 \]

[[_2nd_order, _missing_x]]

2.267

3504

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

0.315

3505

\[ {}y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y = 0 \]

[[_2nd_order, _missing_x]]

0.789

3506

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

0.309

3507

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1.360

3508

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.023

3509

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

1.856

3510

\[ {}y^{\prime } = \frac {{\mathrm e}^{x}-\sin \left (y\right )}{x \cos \left (y\right )} \]

[‘y=_G(x,y’)‘]

2.243

3511

\[ {}y^{\prime } = \frac {1-y^{2}}{2 y x +2} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1.292

3512

\[ {}y^{\prime } = \frac {\left (1-y \,{\mathrm e}^{y x}\right ) {\mathrm e}^{-y x}}{x} \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

2.533

3513

\[ {}y^{\prime } = \frac {x^{2} \left (1-y^{2}\right )+y \,{\mathrm e}^{\frac {y}{x}}}{x \left ({\mathrm e}^{\frac {y}{x}}+2 x^{2} y\right )} \]

[‘y=_G(x,y’)‘]

86.221

3514

\[ {}y^{\prime } = \frac {\cos \left (x \right )-2 x y^{2}}{2 x^{2} y} \]
i.c.

[_Bernoulli]

136.569

3515

\[ {}y^{\prime } = \sin \left (x \right ) \]

[_quadrature]

0.232

3516

\[ {}y^{\prime } = \frac {1}{x^{{2}/{3}}} \]

[_quadrature]

0.218

3517

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

0.855

3518

\[ {}y^{\prime \prime } = x^{n} \]

[[_2nd_order, _quadrature]]

0.879

3519

\[ {}y^{\prime } = x^{2} \ln \left (x \right ) \]
i.c.

[_quadrature]

1.922

3520

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

1.494

3521

\[ {}y^{\prime \prime \prime } = 6 x \]
i.c.

[[_3rd_order, _quadrature]]

0.137

3522

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

1.161

3523

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

0.398

3524

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -8 y = 0 \]

[[_Emden, _Fowler]]

0.747

3525

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.418

3526

\[ {}y^{\prime } = 2 y x \]

[_separable]

1.236

3527

\[ {}y^{\prime } = \frac {y^{2}}{x^{2}+1} \]

[_separable]

1.400

3528

\[ {}{\mathrm e}^{x +y} y^{\prime }-1 = 0 \]

[_separable]

2.838

3529

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

3.618

3530

\[ {}y-\left (x -1\right ) y^{\prime } = 0 \]

[_separable]

1.637

3531

\[ {}y^{\prime } = \frac {2 x \left (-1+y\right )}{x^{2}+3} \]

[_separable]

2.942

3532

\[ {}y-y^{\prime } x = 3-2 x^{2} y^{\prime } \]

[_separable]

1.410

3533

\[ {}y^{\prime } = \frac {\cos \left (x -y\right )}{\sin \left (x \right ) \sin \left (y\right )}-1 \]

[_separable]

4.037

3534

\[ {}y^{\prime } = \frac {x \left (-1+y^{2}\right )}{2 \left (x -2\right ) \left (x -1\right )} \]

[_separable]

4.214

3535

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+2 \]

[_separable]

1.521

3536

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

3.248

3537

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

3.795

3538

\[ {}\left (-x^{2}+1\right ) y^{\prime }+y x = a x \]
i.c.

[_separable]

3.819

3539

\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \]
i.c.

[_separable]

6.465

3540

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]
i.c.

[_separable]

2.622

3541

\[ {}y^{\prime } = \frac {2 \sqrt {-1+y}}{3} \]
i.c.

[_quadrature]

0.692

3542

\[ {}m v^{\prime } = m g -k v^{2} \]
i.c.

[_quadrature]

0.899

3543

\[ {}y^{\prime }+y = 4 \,{\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

0.128

3544

\[ {}y^{\prime }+\frac {2 y}{x} = 5 x^{2} \]

[_linear]

0.094

3545

\[ {}x^{2} y^{\prime }-4 y x = x^{7} \sin \left (x \right ) \]

[_linear]

0.105

3546

\[ {}y^{\prime }+2 y x = 2 x^{3} \]

[_linear]

0.105

3547

\[ {}y^{\prime }+\frac {2 x y}{-x^{2}+1} = 4 x \]

[_linear]

0.120

3548

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {4}{\left (x^{2}+1\right )^{2}} \]

[_linear]

0.115

3549

\[ {}2 \cos \left (x \right )^{2} y^{\prime }+y \sin \left (2 x \right ) = 4 \cos \left (x \right )^{4} \]

[_linear]

0.254

3550

\[ {}y^{\prime }+\frac {y}{x \ln \left (x \right )} = 9 x^{2} \]

[_linear]

0.115

3551

\[ {}y^{\prime }-y \tan \left (x \right ) = 8 \sin \left (x \right )^{3} \]

[_linear]

0.139

3552

\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \]

[_linear]

0.129

3553

\[ {}y^{\prime } = \sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \]

[_linear]

2.080

3554

\[ {}1-y \sin \left (x \right )-\cos \left (x \right ) y^{\prime } = 0 \]

[_linear]

0.332

3555

\[ {}y^{\prime }-\frac {y}{x} = 2 x^{2} \ln \left (x \right ) \]

[_linear]

0.098

3556

\[ {}y^{\prime }+\alpha y = {\mathrm e}^{\beta x} \]

[[_linear, ‘class A‘]]

0.128

3557

\[ {}y^{\prime }+\frac {m y}{x} = \ln \left (x \right ) \]

[_linear]

0.148

3558

\[ {}y^{\prime }+\frac {2 y}{x} = 4 x \]
i.c.

[_linear]

0.196

3559

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = \sin \left (2 x \right ) \]
i.c.

[_linear]

3.485

3560

\[ {}x^{\prime }+\frac {2 x}{4-t} = 5 \]
i.c.

[_linear]

4.039

3561

\[ {}y-{\mathrm e}^{x}+y^{\prime } = 0 \]
i.c.

[[_linear, ‘class A‘]]

1.119

3562

\[ {}y^{\prime }-2 y = \left \{\begin {array}{cc} 1 & x \le 1 \\ 0 & 1<x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.790

3563

\[ {}y^{\prime }-2 y = \left \{\begin {array}{cc} 1-x & x <1 \\ 0 & 1\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.710

3564

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 9 x \]

[[_2nd_order, _missing_y]]

0.987

3565

\[ {}y^{\prime }+\frac {y}{x} = \cos \left (x \right ) \]

[_linear]

3.069

3566

\[ {}y^{\prime }+y = {\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

1.009

3567

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

[_linear]

1.786

3568

\[ {}y^{\prime } x -y = x^{2} \ln \left (x \right ) \]

[_linear]

0.952

3569

\[ {}y^{\prime } = \frac {x^{2}+y x +y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4.230

3570

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.996

3571

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4.224

3572

\[ {}\sin \left (\frac {y}{x}\right ) \left (y^{\prime } x -y\right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

14.590

3573

\[ {}y^{\prime } x = \sqrt {16 x^{2}-y^{2}}+y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

118.604

3574

\[ {}y^{\prime } x -y = \sqrt {9 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

15.546

3575

\[ {}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]

[_separable]

1.615

3576

\[ {}y^{\prime } x +y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

11.193

3577

\[ {}y^{\prime } = \frac {y^{2}+2 y x -2 x^{2}}{x^{2}-y x +y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

25.036

3578

\[ {}2 x y y^{\prime }-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}}-2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘]]

7.842

3579

\[ {}x^{2} y^{\prime } = y^{2}+3 y x +x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

4.485

3580

\[ {}y y^{\prime } = \sqrt {x^{2}+y^{2}}-x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

18.062

3581

\[ {}2 x \left (y+2 x \right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

8.547

3582

\[ {}y^{\prime } x = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

10.239

3583

\[ {}y^{\prime } = \frac {x \sqrt {x^{2}+y^{2}}+y^{2}}{y x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

74.454

3584

\[ {}y^{\prime } = \frac {4 y-2 x}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

53.289

3585

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

14.306

3586

\[ {}y^{\prime } = \frac {y-\sqrt {x^{2}+y^{2}}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

10.477

3587

\[ {}y^{\prime } x -y = \sqrt {4 x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

172.364

3588

\[ {}y^{\prime } = \frac {x +a y}{a x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

15.404

3589

\[ {}y^{\prime } = \frac {x +\frac {y}{2}}{\frac {x}{2}-y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.109

3590

\[ {}y^{\prime }-\frac {y}{x} = \frac {4 x^{2} \cos \left (x \right )}{y} \]

[[_homogeneous, ‘class D‘], _Bernoulli]

9.398

3591

\[ {}y^{\prime }+\frac {y \tan \left (x \right )}{2} = 2 y^{3} \sin \left (x \right ) \]

[_Bernoulli]

22.664

3592

\[ {}y^{\prime }-\frac {3 y}{2 x} = 6 y^{{1}/{3}} x^{2} \ln \left (x \right ) \]

[_Bernoulli]

7.964

3593

\[ {}y^{\prime }+\frac {2 y}{x} = 6 \sqrt {x^{2}+1}\, \sqrt {y} \]

[_Bernoulli]

3.678

3594

\[ {}y^{\prime }+\frac {2 y}{x} = 6 x^{4} y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.530

3595

\[ {}2 x \left (y^{\prime }+x^{2} y^{3}\right )+y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

10.642

3596

\[ {}\left (x -a \right ) \left (x -b \right ) \left (y^{\prime }-\sqrt {y}\right ) = 2 \left (b -a \right ) y \]

[_rational, _Bernoulli]

14.714

3597

\[ {}y^{\prime }+\frac {6 y}{x} = \frac {3 y^{{2}/{3}} \cos \left (x \right )}{x} \]

[_Bernoulli]

9.423

3598

\[ {}y^{\prime }+4 y x = 4 x^{3} \sqrt {y} \]

[_Bernoulli]

2.226

3599

\[ {}y^{\prime }-\frac {y}{2 x \ln \left (x \right )} = 2 x y^{3} \]

[_Bernoulli]

3.191

3600

\[ {}y^{\prime }-\frac {y}{\left (\pi -1\right ) x} = \frac {3 x y^{\pi }}{1-\pi } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7.806