2.2.36 Problems 3501 to 3600

Table 2.73: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

3501

(z2+1)y3zy+λy=0

[_Gegenbauer]

3502

4zy+2(1z)yy=0

[[_2nd_order, _with_linear_symmetries]]

3503

zy2y+9z5y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3504

f+2(z1)f+4f=0

[[_2nd_order, _with_linear_symmetries]]

3505

z2y3zy2+(1+z)y=0

[[_2nd_order, _with_linear_symmetries]]

3506

zy2y+yz=0

[_Lienard]

3507

y2zy2y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

3508

z(1z)y+(1z)y+λy=0

[_Jacobi]

3509

zy+(2z3)y+4yz=0

[[_2nd_order, _with_linear_symmetries]]

3510

(z2+5z+6)y+2y=0

[[_2nd_order, _with_linear_symmetries]]

3511

(z2+5z+7)y+2y=0

[[_Emden, _Fowler]]

3512

y+yz3=0

[[_Emden, _Fowler]]

3513

zy+(1z)y+λy=0

[_Laguerre]

3514

(z2+1)yzy+m2y=0

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3515

y=2xy

[_separable]

3516

y=y2x2+1

[_separable]

3517

ex+yy1=0

[_separable]

3518

y=yxln(x)

[_separable]

3519

y(x2)y=0

[_separable]

3520

y=2x(1+y)x2+3

[_separable]

3521

yyx=32x2y

[_separable]

3522

y=cos(xy)sin(x)sin(y)1

[_separable]

3523

y=x(1+y2)2(x2)(x1)

[_separable]

3524

y=x2y32x2+16+32

[_linear]

3525

(xa)(xb)yy+c=0

[_separable]

3526

(x2+1)y+y2=1
i.c.

[_separable]

3527

(x2+1)y+xy=ax
i.c.

[_separable]

3528

y=1sin(x+y)sin(y)cos(x)
i.c.

[_separable]

3529

y=y3sin(x)

[_separable]

3530

yy=e2x

[[_linear, ‘class A‘]]

3531

x2y4xy=x7sin(x)

[_linear]

3532

y+2xy=2x3

[_linear]

3533

y+2xyx2+1=4x

[_linear]

3534

y+2xyx2+1=4(x2+1)2

[_linear]

3535

2cos(x)2y+ysin(2x)=4cos(x)4

[_linear]

3536

y+yxln(x)=9x2

[_linear]

3537

yytan(x)=8sin(x)3

[_linear]

3538

xt+2x=4et

[_linear]

3539

y=sin(x)(ysec(x)2)

[_linear]

3540

1ysin(x)ycos(x)=0

[_linear]

3541

yyx=2x2ln(x)

[_linear]

3542

y+αy=eβx

[[_linear, ‘class A‘]]

3543

y+mx=ln(x)

[_quadrature]

3544

(3xy)y=3y

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3545

y=(x+y)22x2

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3546

sin(yx)(yxy)=xcos(yx)

[[_homogeneous, ‘class A‘], _dAlembert]

3547

yx=16x2y2+y

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3548

yxy=9x2+y2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3549

x(x2y2)x(x2+y2)y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3550

yx+yln(x)=yln(y)

[[_homogeneous, ‘class A‘], _dAlembert]

3551

y=y2+2xy2x2x2xy+y2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3552

2xyy2y2x2ey2x2=0

[[_homogeneous, ‘class A‘]]

3553

x2y=y2+3xy+x2

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3554

yy=x2+y2x

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3555

2x(2x+y)y=y(4xy)

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3556

yx=xtan(yx)+y

[[_homogeneous, ‘class A‘], _dAlembert]

3557

y=xx2+y2+y2xy

[[_homogeneous, ‘class A‘], _dAlembert]

3558

y25y=0

[[_2nd_order, _missing_x]]

3559

y+4y=0

[[_2nd_order, _missing_x]]

3560

y+y2y=0

[[_2nd_order, _missing_x]]

3561

y=y2

[_quadrature]

3562

y=y2x

[_separable]

3563

y+2y+5y=0

[[_2nd_order, _missing_x]]

3564

y9y=0

[[_2nd_order, _missing_x]]

3565

x2y+5yx+3y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

3566

x2y3yx+4y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3567

x2y3yx+13y=0

[[_Emden, _Fowler]]

3568

2x2yyx+y=9x2

[[_2nd_order, _with_linear_symmetries]]

3569

x2y4yx+6y=x4sin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

3570

y(a+b)y+bya=0

[[_2nd_order, _missing_x]]

3571

y2ay+a2y=0

[[_2nd_order, _missing_x]]

3572

y2ay+(a2+b2)y=0

[[_2nd_order, _missing_x]]

3573

yy6y=0

[[_2nd_order, _missing_x]]

3574

y+6y+9y=0

[[_2nd_order, _missing_x]]

3575

x2y+yxy=0

[[_2nd_order, _exact, _linear, _homogeneous]]

3576

x2y+5yx+4y=0

[[_Emden, _Fowler]]

3577

y=exsin(y)xcos(y)

[‘y=_G(x,y’)‘]

3578

y=1y22xy+2

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

3579

y=(1yexy)exyx
i.c.

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3580

y=x2(1y2)+yeyxx(eyx+2x2y)

[‘y=_G(x,y’)‘]

3581

y=cos(x)2xy22x2y
i.c.

[_Bernoulli]

3582

y=sin(x)

[_quadrature]

3583

y=1x2/3

[_quadrature]

3584

y=xex

[[_2nd_order, _quadrature]]

3585

y=xn

[[_2nd_order, _quadrature]]

3586

y=x2ln(x)
i.c.

[_quadrature]

3587

y=cos(x)
i.c.

[[_2nd_order, _quadrature]]

3588

y=6x
i.c.

[[_3rd_order, _quadrature]]

3589

y=xex
i.c.

[[_2nd_order, _quadrature]]

3590

y+y6y=0

[[_2nd_order, _missing_x]]

3591

x2yyx8y=0

[[_Emden, _Fowler]]

3592

x2y3yx+4y=x2ln(x)

[[_2nd_order, _linear, _nonhomogeneous]]

3593

y=2xy

[_separable]

3594

y=y2x2+1

[_separable]

3595

ex+yy1=0

[_separable]

3596

y=yxln(x)

[_separable]

3597

y(x1)y=0

[_separable]

3598

y=2x(1+y)x2+3

[_separable]

3599

yyx=32x2y

[_separable]

3600

y=cos(xy)sin(x)sin(y)1

[_separable]