2.14.24.77 problem 2377 out of 2993

Link to actual problem [10939] \[ \boxed {x^{2} y^{\prime \prime }-\left (a \,x^{3}+\frac {5}{16}\right ) y=0} \]

type detected by program

{"kovacic", "second_order_bessel_ode"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\sinh \left (\frac {2 \sqrt {a}\, x^{\frac {3}{2}}}{3}\right )}{x^{\frac {1}{4}}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{\frac {1}{4}} y}{\sinh \left (\frac {2 \sqrt {a}\, x^{\frac {3}{2}}}{3}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\cosh \left (\frac {2 \sqrt {a}\, x^{\frac {3}{2}}}{3}\right )}{x^{\frac {1}{4}}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{\frac {1}{4}} y}{\cosh \left (\frac {2 \sqrt {a}\, x^{\frac {3}{2}}}{3}\right )}\right ] \\ \end{align*}