2.14.24.81 problem 2381 out of 2993

Link to actual problem [10943] \[ \boxed {x^{2} y^{\prime \prime }+\left (x^{2 n} a +b \,x^{n}+c \right ) y=0} \]

type detected by program

{"second_order_bessel_ode"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= x^{-\frac {n}{2}+\frac {1}{2}} \operatorname {WhittakerM}\left (-\frac {i b}{2 \sqrt {a}\, n}, \frac {i \sqrt {4 c -1}}{2 n}, \frac {2 i \sqrt {a}\, x^{n}}{n}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{\frac {n}{2}} y}{\sqrt {x}\, \operatorname {WhittakerM}\left (-\frac {i b}{2 \sqrt {a}\, n}, \frac {i \sqrt {4 c -1}}{2 n}, \frac {2 i \sqrt {a}\, x^{n}}{n}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= x^{-\frac {n}{2}+\frac {1}{2}} \operatorname {WhittakerW}\left (-\frac {i b}{2 \sqrt {a}\, n}, \frac {i \sqrt {4 c -1}}{2 n}, \frac {2 i \sqrt {a}\, x^{n}}{n}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{\frac {n}{2}} y}{\sqrt {x}\, \operatorname {WhittakerW}\left (-\frac {i b}{2 \sqrt {a}\, n}, \frac {i \sqrt {4 c -1}}{2 n}, \frac {2 i \sqrt {a}\, x^{n}}{n}\right )}\right ] \\ \end{align*}