2.14.24.89 problem 2389 out of 2993

Link to actual problem [10954] \[ \boxed {x^{2} y^{\prime \prime }+\lambda x y^{\prime }+\left (a \,x^{2}+b x +c \right ) y=0} \]

type detected by program

{"second_order_bessel_ode"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= x^{-\frac {\lambda }{2}} \operatorname {WhittakerM}\left (-\frac {i b}{2 \sqrt {a}}, \frac {\sqrt {\lambda ^{2}-4 c -2 \lambda +1}}{2}, 2 i x \sqrt {a}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{\frac {\lambda }{2}} y}{\operatorname {WhittakerM}\left (-\frac {i b}{2 \sqrt {a}}, \frac {\sqrt {\lambda ^{2}-4 c -2 \lambda +1}}{2}, 2 i x \sqrt {a}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= x^{-\frac {\lambda }{2}} \operatorname {WhittakerW}\left (-\frac {i b}{2 \sqrt {a}}, \frac {\sqrt {\lambda ^{2}-4 c -2 \lambda +1}}{2}, 2 i x \sqrt {a}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{\frac {\lambda }{2}} y}{\operatorname {WhittakerW}\left (-\frac {i b}{2 \sqrt {a}}, \frac {\sqrt {\lambda ^{2}-4 c -2 \lambda +1}}{2}, 2 i x \sqrt {a}\right )}\right ] \\ \end{align*}