2.14.25.74 problem 2474 out of 2993

Link to actual problem [11059] \[ \boxed {\left (x^{2}-1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}-1\right ) y^{\prime }+\left (\left (x^{2}-1\right ) \left (a^{2} x^{2}-\lambda \right )-m^{2}\right ) y=0} \]

type detected by program

{"unknown"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \left (x^{2}-1\right )^{\frac {m}{2}} \operatorname {HeunC}\left (0, -\frac {1}{2}, m , \frac {a^{2}}{4}, \frac {1}{4}+\frac {m^{2}}{4}-\frac {\lambda }{4}, x^{2}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {\left (x^{2}-1\right )^{-\frac {m}{2}} y}{\operatorname {HeunC}\left (0, -\frac {1}{2}, m , \frac {a^{2}}{4}, \frac {1}{4}+\frac {m^{2}}{4}-\frac {\lambda }{4}, x^{2}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \left (x^{2}-1\right )^{\frac {m}{2}} x \operatorname {HeunC}\left (0, \frac {1}{2}, m , \frac {a^{2}}{4}, \frac {1}{4}+\frac {m^{2}}{4}-\frac {\lambda }{4}, x^{2}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {\left (x^{2}-1\right )^{-\frac {m}{2}} y}{x \operatorname {HeunC}\left (0, \frac {1}{2}, m , \frac {a^{2}}{4}, \frac {1}{4}+\frac {m^{2}}{4}-\frac {\lambda }{4}, x^{2}\right )}\right ] \\ \end{align*}