2.2.37 Problems 3601 to 3700

Table 2.75: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

3601

\[ {}y^{\prime } = \frac {x \left (y^{2}-1\right )}{2 \left (-2+x \right ) \left (x -1\right )} \]

[_separable]

2.576

3602

\[ {}y^{\prime } = \frac {x^{2} y-32}{-x^{2}+16}+2 \]

[_separable]

1.401

3603

\[ {}\left (x -a \right ) \left (x -b \right ) y^{\prime }-y+c = 0 \]

[_separable]

1.732

3604

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

2.399

3605

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = a x \]
i.c.

[_separable]

2.130

3606

\[ {}y^{\prime } = 1-\frac {\sin \left (x +y\right )}{\sin \left (y\right ) \cos \left (x \right )} \]
i.c.

[_separable]

3.208

3607

\[ {}y^{\prime } = y^{3} \sin \left (x \right ) \]
i.c.

[_separable]

2.553

3608

\[ {}y^{\prime } = \frac {2 \sqrt {y-1}}{3} \]
i.c.

[_quadrature]

1.246

3609

\[ {}m v^{\prime } = m g -k v^{2} \]
i.c.

[_quadrature]

0.960

3610

\[ {}y^{\prime }+y = 4 \,{\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

0.174

3611

\[ {}y^{\prime }+\frac {2 y}{x} = 5 x^{2} \]

[_linear]

0.155

3612

\[ {}x^{2} y^{\prime }-4 x y = x^{7} \sin \left (x \right ) \]

[_linear]

0.197

3613

\[ {}y^{\prime }+2 x y = 2 x^{3} \]

[_linear]

0.185

3614

\[ {}y^{\prime }+\frac {2 x y}{-x^{2}+1} = 4 x \]

[_linear]

0.189

3615

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = \frac {4}{\left (x^{2}+1\right )^{2}} \]

[_linear]

0.223

3616

\[ {}2 \cos \left (x \right )^{2} y^{\prime }+y \sin \left (2 x \right ) = 4 \cos \left (x \right )^{4} \]

[_linear]

0.225

3617

\[ {}y^{\prime }+\frac {y}{x \ln \left (x \right )} = 9 x^{2} \]

[_linear]

0.164

3618

\[ {}y^{\prime }-y \tan \left (x \right ) = 8 \sin \left (x \right )^{3} \]

[_linear]

0.214

3619

\[ {}x^{\prime } t +2 x = 4 \,{\mathrm e}^{t} \]

[_linear]

0.174

3620

\[ {}y^{\prime } = \sin \left (x \right ) \left (y \sec \left (x \right )-2\right ) \]

[_linear]

1.978

3621

\[ {}1-y \sin \left (x \right )-\cos \left (x \right ) y^{\prime } = 0 \]

[_linear]

0.241

3622

\[ {}y^{\prime }-\frac {y}{x} = 2 x^{2} \ln \left (x \right ) \]

[_linear]

0.162

3623

\[ {}y^{\prime }+\alpha y = {\mathrm e}^{\beta x} \]

[[_linear, ‘class A‘]]

0.126

3624

\[ {}y^{\prime }+\frac {m y}{x} = \ln \left (x \right ) \]

[_linear]

0.160

3625

\[ {}y^{\prime }+\frac {2 y}{x} = 4 x \]
i.c.

[_linear]

0.302

3626

\[ {}y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = \sin \left (2 x \right ) \]
i.c.

[_linear]

2.872

3627

\[ {}x^{\prime }+\frac {2 x}{4-t} = 5 \]
i.c.

[_linear]

1.767

3628

\[ {}y-{\mathrm e}^{x}+y^{\prime } = 0 \]
i.c.

[[_linear, ‘class A‘]]

1.245

3629

\[ {}y^{\prime }-2 y = \left \{\begin {array}{cc} 1 & x \le 1 \\ 0 & 1<x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.570

3630

\[ {}y^{\prime }-2 y = \left \{\begin {array}{cc} 1-x & x <1 \\ 0 & 1\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.549

3631

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 9 x \]

[[_2nd_order, _missing_y]]

1.251

3632

\[ {}y^{\prime }+\frac {y}{x} = \cos \left (x \right ) \]

[_linear]

1.180

3633

\[ {}y^{\prime }+y = {\mathrm e}^{-2 x} \]

[[_linear, ‘class A‘]]

1.023

3634

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

[_linear]

1.661

3635

\[ {}x y^{\prime }-y = x^{2} \ln \left (x \right ) \]

[_linear]

0.969

3636

\[ {}y^{\prime } = \frac {y^{2}+x y+x^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.103

3637

\[ {}\left (3 x -y\right ) y^{\prime } = 3 y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.464

3638

\[ {}y^{\prime } = \frac {\left (x +y\right )^{2}}{2 x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.133

3639

\[ {}\sin \left (\frac {y}{x}\right ) \left (x y^{\prime }-y\right ) = x \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.121

3640

\[ {}x y^{\prime } = \sqrt {16 x^{2}-y^{2}}+y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

75.094

3641

\[ {}x y^{\prime }-y = \sqrt {9 x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.852

3642

\[ {}y \left (x^{2}-y^{2}\right )-x \left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]

[_separable]

1.276

3643

\[ {}x y^{\prime }+y \ln \left (x \right ) = y \ln \left (y\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.076

3644

\[ {}y^{\prime } = \frac {y^{2}+2 x y-2 x^{2}}{x^{2}-x y+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9.478

3645

\[ {}2 x y y^{\prime }-2 y^{2}-x^{2} {\mathrm e}^{-\frac {y^{2}}{x^{2}}} = 0 \]

[[_homogeneous, ‘class A‘]]

2.797

3646

\[ {}x^{2} y^{\prime } = y^{2}+3 x y+x^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1.709

3647

\[ {}y y^{\prime } = \sqrt {y^{2}+x^{2}}-x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.378

3648

\[ {}2 x \left (2 x +y\right ) y^{\prime } = y \left (4 x -y\right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.288

3649

\[ {}x y^{\prime } = x \tan \left (\frac {y}{x}\right )+y \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.804

3650

\[ {}y^{\prime } = \frac {x \sqrt {y^{2}+x^{2}}+y^{2}}{x y} \]

[[_homogeneous, ‘class A‘], _dAlembert]

35.864

3651

\[ {}y^{\prime } = \frac {4 y-2 x}{x +y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

13.458

3652

\[ {}y^{\prime } = \frac {2 x -y}{4 y+x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.830

3653

\[ {}y^{\prime } = \frac {y-\sqrt {y^{2}+x^{2}}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

4.411

3654

\[ {}x y^{\prime }-y = \sqrt {4 x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

65.329

3655

\[ {}y^{\prime } = \frac {x +a y}{a x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.346

3656

\[ {}y^{\prime } = \frac {x +\frac {y}{2}}{\frac {x}{2}-y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.678

3657

\[ {}y^{\prime }-\frac {y}{x} = \frac {4 x^{2} \cos \left (x \right )}{y} \]

[[_homogeneous, ‘class D‘], _Bernoulli]

3.615

3658

\[ {}y^{\prime }+\frac {y \tan \left (x \right )}{2} = 2 y^{3} \sin \left (x \right ) \]

[_Bernoulli]

8.451

3659

\[ {}y^{\prime }-\frac {3 y}{2 x} = 6 y^{{1}/{3}} x^{2} \ln \left (x \right ) \]

[_Bernoulli]

2.043

3660

\[ {}y^{\prime }+\frac {2 y}{x} = 6 \sqrt {x^{2}+1}\, \sqrt {y} \]

[_Bernoulli]

2.152

3661

\[ {}y^{\prime }+\frac {2 y}{x} = 6 y^{2} x^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.849

3662

\[ {}2 x \left (y^{\prime }+y^{3} x^{2}\right )+y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.786

3663

\[ {}\left (x -a \right ) \left (x -b \right ) \left (y^{\prime }-\sqrt {y}\right ) = 2 \left (b -a \right ) y \]

[_rational, _Bernoulli]

5.333

3664

\[ {}y^{\prime }+\frac {6 y}{x} = \frac {3 y^{{2}/{3}} \cos \left (x \right )}{x} \]

[_Bernoulli]

3.052

3665

\[ {}y^{\prime }+4 x y = 4 x^{3} \sqrt {y} \]

[_Bernoulli]

1.354

3666

\[ {}y^{\prime }-\frac {y}{2 x \ln \left (x \right )} = 2 x y^{3} \]

[_Bernoulli]

1.721

3667

\[ {}y^{\prime }-\frac {y}{\left (\pi -1\right ) x} = \frac {3 x y^{\pi }}{1-\pi } \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.276

3668

\[ {}2 y^{\prime }+y \cot \left (x \right ) = \frac {8 \cos \left (x \right )^{3}}{y} \]

[_Bernoulli]

36.732

3669

\[ {}\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right ) = y^{\sqrt {3}} \sec \left (x \right ) \]

[_separable]

4.823

3670

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = x y^{2} \]
i.c.

[_rational, _Bernoulli]

1.888

3671

\[ {}y^{\prime }+y \cot \left (x \right ) = y^{3} \sin \left (x \right )^{3} \]
i.c.

[_Bernoulli]

3.849

3672

\[ {}y^{\prime } = \left (-y+9 x \right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

2.201

3673

\[ {}y^{\prime } = \left (4 x +y+2\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

6.814

3674

\[ {}y^{\prime } = \sin \left (3 x -3 y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

19.786

3675

\[ {}y^{\prime } = \frac {y \left (\ln \left (x y\right )-1\right )}{x} \]

[[_homogeneous, ‘class G‘]]

1.658

3676

\[ {}y^{\prime } = 2 x \left (x +y\right )^{2}-1 \]
i.c.

[[_1st_order, _with_linear_symmetries], _Riccati]

1.808

3677

\[ {}y^{\prime } = \frac {x +2 y-1}{2 x -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.822

3678

\[ {}y^{\prime }+p \left (x \right ) y+q \left (x \right ) y^{2} = r \left (x \right ) \]

[_Riccati]

2.407

3679

\[ {}y^{\prime }+\frac {2 y}{x}-y^{2} = -\frac {2}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.873

3680

\[ {}y^{\prime }+\frac {7 y}{x}-3 y^{2} = \frac {3}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.377

3681

\[ {}\frac {y^{\prime }}{y}+p \left (x \right ) \ln \left (y\right ) = q \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

0.439

3682

\[ {}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

4.009

3683

\[ {}\sec \left (y\right )^{2} y^{\prime }+\frac {\tan \left (y\right )}{2 \sqrt {x +1}} = \frac {1}{2 \sqrt {x +1}} \]

[_separable]

30.760

3684

\[ {}y \,{\mathrm e}^{x y}+\left (2 y-x \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

[‘x=_G(y,y’)‘]

1.340

3685

\[ {}\cos \left (x y\right )-x y \sin \left (x y\right )-x^{2} \sin \left (x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact]

0.315

3686

\[ {}y+3 x^{2}+x y^{\prime } = 0 \]

[_linear]

0.185

3687

\[ {}2 x \,{\mathrm e}^{y}+\left (3 y^{2}+x^{2} {\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

0.255

3688

\[ {}2 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

0.176

3689

\[ {}y^{2}-2 x +2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

0.316

3690

\[ {}4 \,{\mathrm e}^{2 x}+2 x y-y^{2}+\left (x -y\right )^{2} y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

0.586

3691

\[ {}\frac {1}{x}-\frac {y}{y^{2}+x^{2}}+\frac {x y^{\prime }}{y^{2}+x^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Riccati]

0.347

3692

\[ {}y \cos \left (x y\right )-\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

0.257

3693

\[ {}2 y^{2} {\mathrm e}^{2 x}+3 x^{2}+2 y \,{\mathrm e}^{2 x} y^{\prime } = 0 \]

[_exact, _Bernoulli]

0.357

3694

\[ {}y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

0.266

3695

\[ {}\sin \left (y\right )+y \cos \left (x \right )+\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

0.256

3696

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

0.852

3697

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

0.880

3698

\[ {}y^{\prime \prime }-36 y = 0 \]

[[_2nd_order, _missing_x]]

2.232

3699

\[ {}y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.478

3700

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

[[_3rd_order, _missing_x]]

0.077