2.2.37 Problems 3601 to 3700

Table 2.75: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

3601

\[ {}2 y^{\prime }+y \cot \left (x \right ) = \frac {8 \cos \left (x \right )^{3}}{y} \]

[_Bernoulli]

86.279

3602

\[ {}\left (1-\sqrt {3}\right ) y^{\prime }+y \sec \left (x \right ) = y^{\sqrt {3}} \sec \left (x \right ) \]

[_separable]

20.638

3603

\[ {}y^{\prime }+\frac {2 x y}{x^{2}+1} = x y^{2} \]
i.c.

[_rational, _Bernoulli]

5.362

3604

\[ {}y^{\prime }+y \cot \left (x \right ) = y^{3} \sin \left (x \right )^{3} \]
i.c.

[_Bernoulli]

5.472

3605

\[ {}y^{\prime } = \left (9 x -y\right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

7.231

3606

\[ {}y^{\prime } = \left (4 x +y+2\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

14.768

3607

\[ {}y^{\prime } = \sin \left (3 x -3 y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

31.562

3608

\[ {}y^{\prime } = \frac {y \left (\ln \left (y x \right )-1\right )}{x} \]

[[_homogeneous, ‘class G‘]]

7.576

3609

\[ {}y^{\prime } = 2 x \left (x +y\right )^{2}-1 \]
i.c.

[[_1st_order, _with_linear_symmetries], _Riccati]

3.453

3610

\[ {}y^{\prime } = \frac {x +2 y-1}{2 x -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.326

3611

\[ {}y^{\prime }+p \left (x \right ) y+q \left (x \right ) y^{2} = r \left (x \right ) \]

[_Riccati]

1.146

3612

\[ {}y^{\prime }+\frac {2 y}{x}-y^{2} = -\frac {2}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

4.349

3613

\[ {}y^{\prime }+\frac {7 y}{x}-3 y^{2} = \frac {3}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.985

3614

\[ {}\frac {y^{\prime }}{y}+p \left (x \right ) \ln \left (y\right ) = q \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

0.256

3615

\[ {}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

13.861

3616

\[ {}\sec \left (y\right )^{2} y^{\prime }+\frac {\tan \left (y\right )}{2 \sqrt {x +1}} = \frac {1}{2 \sqrt {x +1}} \]

[_separable]

64.441

3617

\[ {}y \,{\mathrm e}^{y x}+\left (2 y-x \,{\mathrm e}^{y x}\right ) y^{\prime } = 0 \]

[‘x=_G(y,y’)‘]

1.743

3618

\[ {}\cos \left (y x \right )-x y \sin \left (y x \right )-x^{2} \sin \left (y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact]

0.335

3619

\[ {}y+3 x^{2}+y^{\prime } x = 0 \]

[_linear]

0.171

3620

\[ {}2 x \,{\mathrm e}^{y}+\left (3 y^{2}+x^{2} {\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

0.288

3621

\[ {}2 y x +\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

0.121

3622

\[ {}y^{2}-2 x +2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

0.484

3623

\[ {}4 \,{\mathrm e}^{2 x}+2 y x -y^{2}+\left (x -y\right )^{2} y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1.290

3624

\[ {}\frac {1}{x}-\frac {y}{x^{2}+y^{2}}+\frac {x y^{\prime }}{x^{2}+y^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Riccati]

0.687

3625

\[ {}y \cos \left (y x \right )-\sin \left (x \right )+x \cos \left (y x \right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

0.212

3626

\[ {}2 y^{2} {\mathrm e}^{2 x}+3 x^{2}+2 y \,{\mathrm e}^{2 x} y^{\prime } = 0 \]

[_exact, _Bernoulli]

0.625

3627

\[ {}y^{2}+\cos \left (x \right )+\left (2 y x +\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

0.236

3628

\[ {}\sin \left (y\right )+y \cos \left (x \right )+\left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

0.280

3629

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

3.257

3630

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

0.475

3631

\[ {}y^{\prime \prime }-36 y = 0 \]

[[_2nd_order, _missing_x]]

3.808

3632

\[ {}y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.659

3633

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

[[_3rd_order, _missing_x]]

0.072

3634

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

[[_3rd_order, _missing_x]]

0.067

3635

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-18 y^{\prime }-40 y = 0 \]

[[_3rd_order, _missing_x]]

0.072

3636

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.079

3637

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y = 0 \]

[[_3rd_order, _missing_x]]

0.088

3638

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.088

3639

\[ {}y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+36 y = 0 \]

[[_high_order, _missing_x]]

0.086

3640

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.970

3641

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

4.217

3642

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.178

3643

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

0.174

3644

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 18 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.911

3645

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 4 x^{2}+5 \]

[[_2nd_order, _with_linear_symmetries]]

0.837

3646

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 4 \,{\mathrm e}^{2 x} \]

[[_3rd_order, _with_linear_symmetries]]

0.159

3647

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y = 24 \,{\mathrm e}^{-3 x} \]

[[_3rd_order, _with_linear_symmetries]]

0.148

3648

\[ {}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = 6 \,{\mathrm e}^{-x} \]

[[_3rd_order, _missing_y]]

0.137

3649

\[ {}y^{\prime \prime }+y = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

2.270

3650

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.799

3651

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.908

3652

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.801

3653

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

35.321

3654

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y = 4 x^{2} \]

[[_3rd_order, _with_linear_symmetries]]

0.155

3655

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 9 \,{\mathrm e}^{-x} \]

[[_3rd_order, _with_linear_symmetries]]

0.160

3656

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}+3 \,{\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.263

3657

\[ {}y^{\prime \prime }+9 y = 5 \cos \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7.694

3658

\[ {}y^{\prime \prime }-y = 9 x \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.950

3659

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -10 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.717

3660

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 4 \cos \left (x \right )-2 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.579

3661

\[ {}y^{\prime \prime }+\omega ^{2} y = \frac {F_{0} \cos \left (\omega t \right )}{m} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6.484

3662

\[ {}y^{\prime \prime }-4 y^{\prime }+6 y = 7 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

13.515

3663

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 4 x \,{\mathrm e}^{x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.170

3664

\[ {}y^{\prime \prime \prime \prime }+104 y^{\prime \prime \prime }+2740 y^{\prime \prime } = 5 \,{\mathrm e}^{-2 x} \cos \left (3 x \right ) \]

[[_high_order, _missing_y]]

0.203

3665

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.388

3666

\[ {}y^{\prime \prime }+6 y = \sin \left (x \right )^{2} \cos \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

11.596

3667

\[ {}y^{\prime \prime }-16 y = 20 \cos \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.355

3668

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 50 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.450

3669

\[ {}y^{\prime \prime }-y = 10 \,{\mathrm e}^{2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.484

3670

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 169 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.107

3671

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 40 \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.220

3672

\[ {}y^{\prime \prime }+y = 3 \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.527

3673

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \,{\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.186

3674

\[ {}y^{\prime \prime }-4 y = 100 x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.948

3675

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

39.604

3676

\[ {}y^{\prime \prime }-2 y^{\prime }+10 y = 24 \,{\mathrm e}^{x} \cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

38.168

3677

\[ {}y^{\prime \prime }+16 y = 34 \,{\mathrm e}^{x}+16 \cos \left (4 x \right )-8 \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13.635

3678

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 4 \,{\mathrm e}^{3 x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.007

3679

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.804

3680

\[ {}y^{\prime \prime }+9 y = 18 \sec \left (3 x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.197

3681

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7.748

3682

\[ {}y^{\prime \prime }-4 y = \frac {8}{{\mathrm e}^{2 x}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.197

3683

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

35.232

3684

\[ {}y^{\prime \prime }+9 y = \frac {36}{4-\cos \left (3 x \right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

49.714

3685

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = \frac {2 \,{\mathrm e}^{5 x}}{x^{2}+4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.017

3686

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 4 \,{\mathrm e}^{3 x} \sec \left (2 x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

30.532

3687

\[ {}y^{\prime \prime }+y = \sec \left (x \right )+4 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.123

3688

\[ {}y^{\prime \prime }+y = \csc \left (x \right )+2 x^{2}+5 x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.132

3689

\[ {}y^{\prime \prime }-y = 2 \tanh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.763

3690

\[ {}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \frac {{\mathrm e}^{m x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.904

3691

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {4 \,{\mathrm e}^{x} \ln \left (x \right )}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.885

3692

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{\sqrt {-x^{2}+4}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.908

3693

\[ {}y^{\prime \prime }+2 y^{\prime }+17 y = \frac {64 \,{\mathrm e}^{-x}}{3+\sin \left (4 x \right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

76.901

3694

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {4 \,{\mathrm e}^{-2 x}}{x^{2}+1}+2 x^{2}-1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.571

3695

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 15 \,{\mathrm e}^{-2 x} \ln \left (x \right )+25 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.332

3696

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {2 \,{\mathrm e}^{x}}{x^{2}} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.267

3697

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 36 \,{\mathrm e}^{2 x} \ln \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.326

3698

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = \frac {2 \,{\mathrm e}^{-x}}{x^{2}+1} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.309

3699

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 12 \,{\mathrm e}^{3 x} \]

[[_3rd_order, _missing_y]]

0.139

3700

\[ {}y^{\prime \prime }-9 y = F \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.734