2.14.26.2 problem 2502 out of 2993

Link to actual problem [11088] \[ \boxed {y^{\prime \prime }+{\mathrm e}^{\lambda x} y a=0} \]

type detected by program

{"second_order_bessel_ode_form_A"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \operatorname {BesselJ}\left (0, \frac {2 \sqrt {a}\, {\mathrm e}^{\frac {\lambda x}{2}}}{\lambda }\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\operatorname {BesselJ}\left (0, \frac {2 \sqrt {a}\, {\mathrm e}^{\frac {\lambda x}{2}}}{\lambda }\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \operatorname {BesselY}\left (0, \frac {2 \sqrt {a}\, {\mathrm e}^{\frac {\lambda x}{2}}}{\lambda }\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\operatorname {BesselY}\left (0, \frac {2 \sqrt {a}\, {\mathrm e}^{\frac {\lambda x}{2}}}{\lambda }\right )}\right ] \\ \end{align*}