# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.076 |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-18 y^{\prime }-40 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.076 |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.070 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.073 |
|
\[
{}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.077 |
|
\[
{}y^{\prime \prime \prime \prime }-13 y^{\prime \prime }+36 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.078 |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.963 |
|
\[
{}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.332 |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
0.126 |
|
\[
{}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 y^{\prime } x = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.131 |
|
\[
{}y^{\prime \prime }+y^{\prime }-6 y = 18 \,{\mathrm e}^{5 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.280 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 4 x^{2}+5
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.338 |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = 4 \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.133 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }+8 y = 24 \,{\mathrm e}^{-3 x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.132 |
|
\[
{}y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = 6 \,{\mathrm e}^{-x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.121 |
|
\[
{}y^{\prime \prime }+y = 6 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.140 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.426 |
|
\[
{}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.849 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.359 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
12.627 |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y = 4 x^{2}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.132 |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 9 \,{\mathrm e}^{-x}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.132 |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}+3 \,{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.168 |
|
\[
{}y^{\prime \prime }+9 y = 5 \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.218 |
|
\[
{}y^{\prime \prime }-y = 9 x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.484 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = -10 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.715 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = 4 \cos \left (x \right )-2 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.723 |
|
\[
{}y^{\prime \prime }+\omega ^{2} y = \frac {F_{0} \cos \left (\omega t \right )}{m}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.071 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+6 y = 7 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
18.964 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = 4 x \,{\mathrm e}^{x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.141 |
|
\[
{}y^{\prime \prime \prime \prime }+104 y^{\prime \prime \prime }+2740 y^{\prime \prime } = 5 \,{\mathrm e}^{-2 x} \cos \left (3 x \right )
\] |
[[_high_order, _missing_y]] |
✓ |
0.210 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.064 |
|
\[
{}y^{\prime \prime }+6 y = \sin \left (x \right )^{2} \cos \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
5.661 |
|
\[
{}y^{\prime \prime }-16 y = 20 \cos \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.723 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = 50 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.776 |
|
\[
{}y^{\prime \prime }-y = 10 \,{\mathrm e}^{2 x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.695 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 169 \sin \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.762 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = 40 \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.874 |
|
\[
{}y^{\prime \prime }+y = 3 \,{\mathrm e}^{x} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.894 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \,{\mathrm e}^{-x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
5.356 |
|
\[
{}y^{\prime \prime }-4 y = 100 x \,{\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.842 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
13.162 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+10 y = 24 \,{\mathrm e}^{x} \cos \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
19.527 |
|
\[
{}y^{\prime \prime }+16 y = 34 \,{\mathrm e}^{x}+16 \cos \left (4 x \right )-8 \sin \left (4 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
6.719 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 4 \,{\mathrm e}^{3 x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.534 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.478 |
|
\[
{}y^{\prime \prime }+9 y = 18 \sec \left (3 x \right )^{3}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.131 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.724 |
|
\[
{}y^{\prime \prime }-4 y = \frac {8}{{\mathrm e}^{2 x}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.704 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \tan \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
42.346 |
|
\[
{}y^{\prime \prime }+9 y = \frac {36}{4-\cos \left (3 x \right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
29.953 |
|
\[
{}y^{\prime \prime }-10 y^{\prime }+25 y = \frac {2 \,{\mathrm e}^{5 x}}{x^{2}+4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.686 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+13 y = 4 \,{\mathrm e}^{3 x} \sec \left (2 x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
12.876 |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )+4 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.918 |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )+2 x^{2}+5 x +1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
5.022 |
|
\[
{}y^{\prime \prime }-y = 2 \tanh \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.123 |
|
\[
{}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \frac {{\mathrm e}^{m x}}{x^{2}+1}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.683 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+y = \frac {4 \,{\mathrm e}^{x} \ln \left (x \right )}{x^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.555 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{\sqrt {-x^{2}+4}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.598 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+17 y = \frac {64 \,{\mathrm e}^{-x}}{3+\sin \left (4 x \right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
54.082 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {4 \,{\mathrm e}^{-2 x}}{x^{2}+1}+2 x^{2}-1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.856 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }+4 y = 15 \,{\mathrm e}^{-2 x} \ln \left (x \right )+25 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.425 |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {2 \,{\mathrm e}^{x}}{x^{2}}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.239 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 36 \,{\mathrm e}^{2 x} \ln \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.283 |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = \frac {2 \,{\mathrm e}^{-x}}{x^{2}+1}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.326 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 12 \,{\mathrm e}^{3 x}
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.126 |
|
\[
{}y^{\prime \prime }-9 y = F \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.728 |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+4 y = F \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.692 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = F \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.693 |
|
\[
{}y^{\prime \prime }+4 y^{\prime }-12 y = F \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.719 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.803 |
|
\[
{}y^{\prime \prime }+y = \sec \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.365 |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.290 |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \cos \left (x \right )
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.464 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 9 \ln \left (x \right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
5.139 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 8 x \ln \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
22.215 |
|
\[
{}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
11.914 |
|
\[
{}x^{2} y^{\prime \prime }+6 y^{\prime } x +6 y = 4 \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.068 |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = \frac {x^{2}}{\ln \left (x \right )}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.826 |
|
\[
{}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+m^{2} y = x^{m} \ln \left (x \right )^{k}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.082 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
4.005 |
|
\[
{}t^{2} y^{\prime \prime }+t y^{\prime }+25 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
2.082 |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.319 |
|
\[
{}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.337 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.406 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[_Gegenbauer] |
✓ |
0.337 |
|
\[
{}y^{\prime \prime }-\frac {y^{\prime }}{x}+4 x^{2} y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.400 |
|
\[
{}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.388 |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.630 |
|
\[
{}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+2 y = 8 x^{2} {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.449 |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 8 x^{4}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.404 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = 15 \,{\mathrm e}^{3 x} \sqrt {x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.581 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 4 \,{\mathrm e}^{2 x} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.603 |
|
\[
{}4 x^{2} y^{\prime \prime }+y = \sqrt {x}\, \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.410 |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.082 |
|
\[
{}y^{\prime \prime \prime }+11 y^{\prime \prime }+36 y^{\prime }+26 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.080 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.388 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.405 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime } = x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.133 |
|
\[
{}y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime } = \sin \left (4 x \right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.178 |
|