2.2.38 Problems 3701 to 3800

Table 2.77: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

3701

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = F \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.214

3702

\[ {}y^{\prime \prime }+y^{\prime }-2 y = F \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.685

3703

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = F \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.757

3704

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.115

3705

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.088

3706

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5.995

3707

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.931

3708

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 9 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

54.533

3709

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 8 x \ln \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

63.049

3710

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19.542

3711

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +6 y = 4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.970

3712

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = \frac {x^{2}}{\ln \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.892

3713

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+m^{2} y = x^{m} \ln \left (x \right )^{k} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.014

3714

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

4.280

3715

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+25 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5.144

3716

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.091

3717

\[ {}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.097

3718

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.356

3719

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

0.101

3720

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+4 x^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.149

3721

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.097

3722

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.247

3723

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+2 y = 8 x^{2} {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.249

3724

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 8 x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

0.203

3725

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 15 \,{\mathrm e}^{3 x} \sqrt {x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.242

3726

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 4 \,{\mathrm e}^{2 x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.248

3727

\[ {}4 x^{2} y^{\prime \prime }+y = \sqrt {x}\, \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.200

3728

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 0 \]

[[_3rd_order, _missing_x]]

0.043

3729

\[ {}y^{\prime \prime \prime }+11 y^{\prime \prime }+36 y^{\prime }+26 y = 0 \]

[[_3rd_order, _missing_x]]

0.057

3730

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.717

3731

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.668

3732

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime } = x^{2} \]

[[_3rd_order, _missing_y]]

0.122

3733

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+25 y^{\prime } = \sin \left (4 x \right ) \]

[[_3rd_order, _missing_y]]

0.149

3734

\[ {}y^{\prime \prime \prime }+9 y^{\prime \prime }+24 y^{\prime }+16 y = 8 \,{\mathrm e}^{-x}+1 \]

[[_3rd_order, _with_linear_symmetries]]

0.141

3735

\[ {}y^{\prime \prime }-4 y = 5 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.724

3736

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.717

3737

\[ {}y^{\prime \prime }-y = 4 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.677

3738

\[ {}y^{\prime \prime }+y x = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.513

3739

\[ {}y^{\prime \prime }+4 y = \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

79.511

3740

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 5 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.814

3741

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.902

3742

\[ {}y^{\prime \prime }+y = 4 \cos \left (2 x \right )+3 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7.291

3743

\[ {}y^{\prime }-2 y = 6 \,{\mathrm e}^{5 t} \]
i.c.

[[_linear, ‘class A‘]]

0.339

3744

\[ {}y^{\prime }+y = 8 \,{\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

1.020

3745

\[ {}y^{\prime }+3 y = 2 \,{\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

1.365

3746

\[ {}y^{\prime }+2 y = 4 t \]
i.c.

[[_linear, ‘class A‘]]

1.340

3747

\[ {}y^{\prime }-y = 6 \cos \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.599

3748

\[ {}y^{\prime }-y = 5 \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.585

3749

\[ {}y^{\prime }+y = 5 \,{\mathrm e}^{t} \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.603

3750

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.333

3751

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.757

3752

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 \]
i.c.

[[_2nd_order, _missing_x]]

1.750

3753

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 36 \]
i.c.

[[_2nd_order, _missing_x]]

1.446

3754

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 10 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.415

3755

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.313

3756

\[ {}y^{\prime \prime }-2 y^{\prime } = 30 \,{\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _missing_y]]

1.427

3757

\[ {}y^{\prime \prime }-y = 12 \,{\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.378

3758

\[ {}y^{\prime \prime }+4 y = 10 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.559

3759

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 12-6 \,{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.404

3760

\[ {}y^{\prime \prime }-y = 6 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.447

3761

\[ {}y^{\prime \prime }-9 y = 13 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.400

3762

\[ {}y^{\prime \prime }-y = 8 \sin \left (t \right )-6 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.490

3763

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 10 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.503

3764

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 20 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.694

3765

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 20 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.430

3766

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 3 \cos \left (t \right )+\sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.825

3767

\[ {}y^{\prime \prime }+4 y = 9 \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.530

3768

\[ {}y^{\prime \prime }+y = 6 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.681

3769

\[ {}y^{\prime \prime }+9 y = 7 \sin \left (4 t \right )+14 \cos \left (4 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.010

3770

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.427

3771

\[ {}y^{\prime }+2 y = 2 \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.773

3772

\[ {}y^{\prime }-2 y = \operatorname {Heaviside}\left (t -2\right ) {\mathrm e}^{t -2} \]
i.c.

[[_linear, ‘class A‘]]

0.448

3773

\[ {}y^{\prime }-y = 4 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \sin \left (t +\frac {\pi }{4}\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.750

3774

\[ {}y^{\prime }+2 y = \operatorname {Heaviside}\left (t -\pi \right ) \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.736

3775

\[ {}y^{\prime }+3 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.691

3776

\[ {}y^{\prime }-3 y = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\frac {\pi }{2} \\ 1 & \frac {\pi }{2}\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

1.044

3777

\[ {}y^{\prime }-3 y = -10 \,{\mathrm e}^{-t +a} \sin \left (-2 t +2 a \right ) \operatorname {Heaviside}\left (t -a \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.048

3778

\[ {}y^{\prime \prime }-y = \operatorname {Heaviside}\left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.542

3779

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 1-3 \operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.234

3780

\[ {}y^{\prime \prime }-4 y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.579

3781

\[ {}y^{\prime \prime }+y = t -\operatorname {Heaviside}\left (t -1\right ) \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.528

3782

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = -10 \operatorname {Heaviside}\left (t -\frac {\pi }{4}\right ) \cos \left (t +\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.678

3783

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 30 \operatorname {Heaviside}\left (t -1\right ) {\mathrm e}^{1-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.004

3784

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 5 \operatorname {Heaviside}\left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.360

3785

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \sin \left (t \right )+\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (1+\cos \left (t \right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.875

3786

\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.561

3787

\[ {}y^{\prime }-y = \left \{\begin {array}{cc} 2 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.266

3788

\[ {}y^{\prime }+y = \delta \left (t -5\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.688

3789

\[ {}y^{\prime }-2 y = \delta \left (t -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.356

3790

\[ {}y^{\prime }+4 y = 3 \delta \left (t -1\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.509

3791

\[ {}y^{\prime }-5 y = 2 \,{\mathrm e}^{-t}+\delta \left (t -3\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.598

3792

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.294

3793

\[ {}y^{\prime \prime }-4 y = \delta \left (t -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.685

3794

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \delta \left (t -\frac {\pi }{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.463

3795

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = \delta \left (t -\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.876

3796

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.009

3797

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = \delta \left (t -\frac {\pi }{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.246

3798

\[ {}y^{\prime \prime }+9 y = 15 \sin \left (2 t \right )+\delta \left (t -\frac {\pi }{6}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.698

3799

\[ {}y^{\prime \prime }+16 y = 4 \cos \left (3 t \right )+\delta \left (t -\frac {\pi }{3}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.003

3800

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \sin \left (t \right )+\delta \left (t -\frac {\pi }{6}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.450