2.14.26.6 problem 2506 out of 2993

Link to actual problem [11092] \[ \boxed {y^{\prime \prime }-\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+c \right ) y=0} \]

type detected by program

{"unknown"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= {\mathrm e}^{-\frac {\lambda x}{2}} \operatorname {WhittakerM}\left (-\frac {b}{2 \lambda \sqrt {a}}, \frac {\sqrt {c}}{\lambda }, \frac {2 \sqrt {a}\, {\mathrm e}^{\lambda x}}{\lambda }\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{\frac {\lambda x}{2}} y}{\operatorname {WhittakerM}\left (-\frac {b}{2 \lambda \sqrt {a}}, \frac {\sqrt {c}}{\lambda }, \frac {2 \sqrt {a}\, {\mathrm e}^{\lambda x}}{\lambda }\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= {\mathrm e}^{-\frac {\lambda x}{2}} \operatorname {WhittakerW}\left (-\frac {b}{2 \lambda \sqrt {a}}, \frac {\sqrt {c}}{\lambda }, \frac {2 \sqrt {a}\, {\mathrm e}^{\lambda x}}{\lambda }\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{\frac {\lambda x}{2}} y}{\operatorname {WhittakerW}\left (-\frac {b}{2 \lambda \sqrt {a}}, \frac {\sqrt {c}}{\lambda }, \frac {2 \sqrt {a}\, {\mathrm e}^{\lambda x}}{\lambda }\right )}\right ] \\ \end{align*}