2.14.29.26 problem 2826 out of 2993

Link to actual problem [13951] \[ \boxed {\left (x^{2}-4\right ) y^{\prime \prime }+\left (x^{2}+x -6\right ) y=0} \] With the expansion point for the power series method at \(x = 2\).

type detected by program

{"second order series method. Ordinary point", "second order series method. Taylor series method"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \operatorname {WhittakerM}\left (-\frac {i}{2}, \frac {1}{2}, 2 i x +4 i\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\operatorname {WhittakerM}\left (-\frac {i}{2}, \frac {1}{2}, 2 i \left (2+x \right )\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \operatorname {WhittakerW}\left (-\frac {i}{2}, \frac {1}{2}, 2 i x +4 i\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {y}{\operatorname {WhittakerW}\left (-\frac {i}{2}, \frac {1}{2}, 2 i \left (2+x \right )\right )}\right ] \\ \end{align*}