# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}x y^{\prime \prime }-\left (x -1\right ) y^{\prime }-x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.791 |
|
\[
{}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 x y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.645 |
|
\[
{}4 y^{\prime \prime }+x y^{\prime }+4 y = 0
\] |
[_Lienard] |
✓ |
0.525 |
|
\[
{}y^{\prime \prime }+2 x^{2} y^{\prime }+x y = 2 \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.712 |
|
\[
{}y^{\prime \prime }+x y^{\prime }-4 y = 6 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.634 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{1-x}+x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.678 |
|
\[
{}x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{\left (-x^{2}+1\right )^{2}}+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.821 |
|
\[
{}\left (-2+x \right )^{2} y^{\prime \prime }+\left (-2+x \right ) {\mathrm e}^{x} y^{\prime }+\frac {4 y}{x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.925 |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x \left (x -3\right )}-\frac {y}{x^{3} \left (x +3\right )} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.135 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-7 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.053 |
|
\[
{}4 x^{2} y^{\prime \prime }+x \,{\mathrm e}^{x} y^{\prime }-y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.085 |
|
\[
{}4 x y^{\prime \prime }-x y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.231 |
|
\[
{}x^{2} y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+5 \,{\mathrm e}^{2 x} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.961 |
|
\[
{}4 x^{2} y^{\prime \prime }+3 x y^{\prime }+x y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.851 |
|
\[
{}6 x^{2} y^{\prime \prime }+x \left (1+18 x \right ) y^{\prime }+\left (1+12 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.948 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.069 |
|
\[
{}2 x y^{\prime \prime }+y^{\prime }-2 x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.759 |
|
\[
{}3 x^{2} y^{\prime \prime }-x \left (8+x \right ) y^{\prime }+6 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.938 |
|
\[
{}2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.040 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-\left (x +5\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.137 |
|
\[
{}3 x^{2} y^{\prime \prime }+x \left (7+3 x \right ) y^{\prime }+\left (1+6 x \right ) y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.927 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+\left (1-x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.849 |
|
\[
{}3 x^{2} y^{\prime \prime }+x \left (3 x^{2}+1\right ) y^{\prime }-2 x y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.935 |
|
\[
{}4 x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (2 x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.882 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (-2 x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.862 |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.954 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (3-x \right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.884 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-\left (4+x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.316 |
|
\[
{}x^{2} y^{\prime \prime }-\left (-x^{2}+x \right ) y^{\prime }+\left (x^{3}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.894 |
|
\[
{}x^{2} y^{\prime \prime }-\left (2 \sqrt {5}-1\right ) x y^{\prime }+\left (\frac {19}{4}-3 x^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.257 |
|
\[
{}x^{2} y^{\prime \prime }+\left (-2 x^{5}+9 x \right ) y^{\prime }+\left (10 x^{4}+5 x^{2}+25\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.931 |
|
\[
{}x^{2} y^{\prime \prime }+\left (4 x +\frac {1}{2} x^{2}-\frac {1}{3} x^{3}\right ) y^{\prime }-\frac {7 y}{4} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.602 |
|
\[
{}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.251 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.935 |
|
\[
{}4 x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.960 |
|
\[
{}x^{2} y^{\prime \prime }+x \cos \left (x \right ) y^{\prime }-2 y \,{\mathrm e}^{x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.206 |
|
\[
{}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.944 |
|
\[
{}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x -\frac {3}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.036 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.317 |
|
\[
{}x^{2} y^{\prime \prime }+x^{3} y^{\prime }-\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.439 |
|
\[
{}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+7 x \,{\mathrm e}^{x} y^{\prime }+9 \left (1+\tan \left (x \right )\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.448 |
|
\[
{}x^{2} \left (x +1\right ) y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.028 |
|
\[
{}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (1-x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.933 |
|
\[
{}x y^{\prime \prime }-y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.184 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (x^{2}+6\right ) y^{\prime }+6 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.954 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.970 |
|
\[
{}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.896 |
|
\[
{}x y^{\prime \prime }+y^{\prime }-2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.776 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.291 |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.844 |
|
\[
{}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.912 |
|
\[
{}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (2+3 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.404 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.929 |
|
\[
{}4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.006 |
|
\[
{}x^{2} y^{\prime \prime }+2 x \left (x +2\right ) y^{\prime }+2 \left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.491 |
|
\[
{}x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (1-x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.857 |
|
\[
{}4 x^{2} y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }+\left (4 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.007 |
|
\[
{}4 x^{2} y^{\prime \prime }-\left (3+4 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.306 |
|
\[
{}x y^{\prime \prime }-x y^{\prime }+y = 0
\] |
[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.193 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (4+x \right ) y^{\prime }+\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.331 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {9}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.902 |
|
\[
{}x y^{\prime \prime }-y^{\prime }+x y = 0
\] |
[_Lienard] |
✓ |
1.168 |
|
\[
{}y^{\prime \prime }+x y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.490 |
|
\[
{}y^{\prime \prime }-x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.468 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-6 x y^{\prime }-4 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.644 |
|
\[
{}x y^{\prime \prime }+y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.753 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+x y = 0
\] |
[_Lienard] |
✓ |
0.761 |
|
\[
{}2 x y^{\prime \prime }+5 \left (-2 x +1\right ) y^{\prime }-5 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.946 |
|
\[
{}x y^{\prime \prime }+y^{\prime }+x y = 0
\] |
[_Lienard] |
✓ |
0.641 |
|
\[
{}\left (4 x^{2}+1\right ) y^{\prime \prime }-8 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.594 |
|
\[
{}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.935 |
|
\[
{}4 x y^{\prime \prime }+3 y^{\prime }+3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.851 |
|
\[
{}x^{2} y^{\prime \prime }+\frac {3 x y^{\prime }}{2}-\frac {\left (x +1\right ) y}{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.908 |
|
\[
{}x^{2} y^{\prime \prime }-x \left (2-x \right ) y^{\prime }+\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.303 |
|
\[
{}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 \left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.926 |
|
\[
{}y^{\prime \prime }+\left (1-\frac {3}{4 x^{2}}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.216 |
|
\[
{}5 x y+4 y^{2}+1+\left (x^{2}+2 x y\right ) y^{\prime } = 0
\] |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
1.431 |
|
\[
{}2 x \tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime } = 0
\] |
[[_1st_order, _with_exponential_symmetries]] |
✓ |
1.773 |
|
\[
{}y^{2} \left (x^{2}+1\right )+y+\left (2 x y+1\right ) y^{\prime } = 0
\] |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✗ |
1.445 |
|
\[
{}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
2.049 |
|
\[
{}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
2.373 |
|
\[
{}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.359 |
|
\[
{}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.843 |
|
\[
{}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
4.061 |
|
\[
{}3 x -y-6+\left (x +y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
13.267 |
|
\[
{}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.702 |
|
\[
{}y = y^{\prime }+\frac {{y^{\prime }}^{2}}{2}
\] |
[_quadrature] |
✓ |
0.663 |
|
\[
{}\left (y-x y^{\prime }\right )^{2} = 1+{y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
0.564 |
|
\[
{}y-x = {y^{\prime }}^{2} \left (1-\frac {2 y^{\prime }}{3}\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
1.786 |
|
\[
{}x^{2} y^{\prime } = x \left (y-1\right )+\left (y-1\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, _Riccati] |
✓ |
1.533 |
|
\[
{}y^{\prime } = {\mathrm e}^{-x}
\] |
[_quadrature] |
✓ |
0.305 |
|
\[
{}y^{\prime } = 1-x^{5}+\sqrt {x}
\] |
[_quadrature] |
✓ |
0.283 |
|
\[
{}3 y-2 x +\left (3 x -2\right ) y^{\prime } = 0
\] |
[_linear] |
✓ |
1.470 |
|
\[
{}x^{2}+x -1+\left (2 x y+y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
1.638 |
|
\[
{}{\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
1.435 |
|
\[
{}\left (x +1\right ) y^{\prime }-x^{2} y^{2} = 0
\] |
[_separable] |
✓ |
1.331 |
|
\[
{}y^{\prime } = \frac {y-2 x}{x}
\] |
[_linear] |
✓ |
1.219 |
|
\[
{}x^{3}+y^{3}-x y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
7.622 |
|
\[
{}y^{\prime }+y = 0
\] |
[_quadrature] |
✓ |
0.999 |
|
\[
{}y^{\prime }+y = x^{2}+2
\] |
[[_linear, ‘class A‘]] |
✓ |
0.996 |
|