2.2.34 Problems 3301 to 3400

Table 2.81: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

3301

\begin{align*} 2 x^{2} y+{y^{\prime }}^{2}&=x^{3} y^{\prime } \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.298

3302

\begin{align*} y {y^{\prime }}^{2}&=y+3 y^{\prime } x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

76.858

3303

\begin{align*} 8 x +1&=y {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

27.035

3304

\begin{align*} y {y^{\prime }}^{2}+2 y^{\prime }+1&=0 \\ \end{align*}

[_quadrature]

3.319

3305

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) x&=\left (x +y\right ) y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.882

3306

\begin{align*} x^{2}-3 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

1.129

3307

\begin{align*} 2 y^{\prime } x +y&=x {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.749

3308

\begin{align*} x&={y^{\prime }}^{2}+y^{\prime } \\ \end{align*}

[_quadrature]

0.307

3309

\begin{align*} x&=y-{y^{\prime }}^{3} \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

0.973

3310

\begin{align*} x +2 y y^{\prime }&=x {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.058

3311

\begin{align*} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.026

3312

\begin{align*} x {y^{\prime }}^{3}&=y y^{\prime }+1 \\ \end{align*}

[_dAlembert]

0.385

3313

\begin{align*} y \left (1+{y^{\prime }}^{2}\right )&=2 y^{\prime } x \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.704

3314

\begin{align*} 2 x +x {y^{\prime }}^{2}&=2 y y^{\prime } \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.104

3315

\begin{align*} x&=y y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

[_dAlembert]

3.385

3316

\begin{align*} 4 x {y^{\prime }}^{2}+2 y^{\prime } x&=y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.079

3317

\begin{align*} y&=y^{\prime } x \left (1+y^{\prime }\right ) \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.475

3318

\begin{align*} 2 x {y^{\prime }}^{3}+1&=y {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.901

3319

\begin{align*} {y^{\prime }}^{3}+y y^{\prime } x&=2 y^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.594

3320

\begin{align*} 3 {y^{\prime }}^{4} x&=y {y^{\prime }}^{3}+1 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

4.895

3321

\begin{align*} 2 {y^{\prime }}^{5}+2 y^{\prime } x&=y \\ \end{align*}

[_dAlembert]

0.511

3322

\begin{align*} \frac {1}{{y^{\prime }}^{2}}+y^{\prime } x&=2 y \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

28.111

3323

\begin{align*} 2 y&=3 y^{\prime } x +4+2 \ln \left (y^{\prime }\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

7.934

3324

\begin{align*} y&=y^{\prime } x +{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.321

3325

\begin{align*} y&=y^{\prime } x +\frac {1}{y^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.835

3326

\begin{align*} y&=y^{\prime } x -\sqrt {y^{\prime }} \\ \end{align*}

[[_homogeneous, ‘class G‘], _Clairaut]

2.768

3327

\begin{align*} y&=y^{\prime } x +\ln \left (y^{\prime }\right ) \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

4.892

3328

\begin{align*} y&=y^{\prime } x +\frac {3}{{y^{\prime }}^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.110

3329

\begin{align*} y&=y^{\prime } x -{y^{\prime }}^{{2}/{3}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.887

3330

\begin{align*} y&=y^{\prime } x +{\mathrm e}^{y^{\prime }} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

3.951

3331

\begin{align*} \left (-y^{\prime } x +y\right )^{2}&=1+{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.436

3332

\begin{align*} x {y^{\prime }}^{2}-y y^{\prime }-2&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.853

3333

\begin{align*} y^{2}-2 y y^{\prime } x +{y^{\prime }}^{2} \left (x^{2}-1\right )&=0 \\ \end{align*}

[_separable]

0.249

3334

\begin{align*} y^{\prime }&=\sqrt {1-y} \\ y \left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[_quadrature]

0.112

3335

\begin{align*} y^{\prime }&=y x -x^{2} \\ y \left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

[_linear]

0.324

3336

\begin{align*} y^{\prime }&=y^{2} x^{2} \\ y \left (1\right ) &= 0 \\ \end{align*}
Series expansion around \(x=1\).

[_separable]

0.183

3337

\begin{align*} y^{\prime }&=3 x +\frac {y}{x} \\ y \left (1\right ) &= 3 \\ \end{align*}
Series expansion around \(x=1\).

[_linear]

0.312

3338

\begin{align*} y^{\prime }&=\ln \left (y x \right ) \\ y \left (1\right ) &= 1 \\ \end{align*}
Series expansion around \(x=1\).

[‘y=_G(x,y’)‘]

0.305

3339

\begin{align*} y^{\prime }&=1+y^{2} \\ y \left (1\right ) &= -1 \\ \end{align*}
Series expansion around \(x=1\).

[_quadrature]

0.170

3340

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ y \left (2\right ) &= 0 \\ \end{align*}
Series expansion around \(x=2\).

[[_Riccati, _special]]

0.281

3341

\begin{align*} y^{\prime }&=\sqrt {y x +1} \\ y \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[‘y=_G(x,y’)‘]

0.173

3342

\begin{align*} y^{\prime }&=\cos \left (x \right )+\sin \left (y\right ) \\ y \left (\frac {\pi }{2}\right ) &= \frac {\pi }{2} \\ \end{align*}
Series expansion around \(x=\frac {\pi }{2}\).

[‘y=_G(x,y’)‘]

0.221

3343

\begin{align*} y^{\prime \prime }-y&=\sin \left (x \right ) \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.431

3344

\begin{align*} y^{\prime \prime }-2 y&={\mathrm e}^{2 x} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.474

3345

\begin{align*} y^{\prime \prime }+2 y y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.267

3346

\begin{align*} y^{\prime \prime }&=\sin \left (y\right ) \\ y \left (0\right ) &= \frac {\pi }{4} \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.534

3347

\begin{align*} y^{\prime \prime }+\frac {{y^{\prime }}^{2}}{2}-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.303

3348

\begin{align*} y^{\prime \prime }&=\sin \left (y x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}
Series expansion around \(x=\frac {\pi }{2}\).

[NONE]

0.932

3349

\begin{align*} y^{\prime \prime }&=\cos \left (y x \right ) \\ y \left (\frac {\pi }{2}\right ) &= 1 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}
Series expansion around \(x=\frac {\pi }{2}\).

[NONE]

0.921

3350

\begin{align*} 2 y^{\prime \prime } x +5 y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.663

3351

\begin{align*} 3 x \left (3 x +2\right ) y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.936

3352

\begin{align*} x^{2} \left (x +4\right ) y^{\prime \prime }+7 y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.922

3353

\begin{align*} 2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.762

3354

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.803

3355

\begin{align*} 9 x^{2} y^{\prime \prime }+\left (3 x +2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.735

3356

\begin{align*} \left (x^{3}+2 x^{2}\right ) y^{\prime \prime }-y^{\prime } x +\left (1-x \right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.862

3357

\begin{align*} 2 x^{2} y^{\prime \prime }-3 \left (x^{2}+x \right ) y^{\prime }+\left (3 x +2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.778

3358

\begin{align*} 3 x^{2} y^{\prime \prime }+\left (-x^{2}+5 x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.848

3359

\begin{align*} 4 x^{2} y^{\prime \prime }+x \left (x^{2}-4\right ) y^{\prime }+3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.834

3360

\begin{align*} 4 x^{2} y^{\prime \prime }-3 \left (x^{2}+x \right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.053

3361

\begin{align*} 9 x^{2} y^{\prime \prime }+9 \left (-x^{2}+x \right ) y^{\prime }+\left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.833

3362

\begin{align*} 4 \left (1-x \right ) x^{2} y^{\prime \prime }+3 x \left (2 x +1\right ) y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.833

3363

\begin{align*} 2 x^{2} \left (1-3 x \right ) y^{\prime \prime }+5 y^{\prime } x -2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.829

3364

\begin{align*} 4 x^{2} \left (x +1\right ) y^{\prime \prime }-5 y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.797

3365

\begin{align*} x^{2} \left (x +4\right ) y^{\prime \prime }+x \left (x -1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.802

3366

\begin{align*} \left (8-x \right ) x^{2} y^{\prime \prime }+6 y^{\prime } x -y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.846

3367

\begin{align*} 2 x^{2} y^{\prime \prime }+x \left (x^{2}+1\right ) y^{\prime }-\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.903

3368

\begin{align*} 2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.590

3369

\begin{align*} 3 x^{2} y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}-2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.675

3370

\begin{align*} x^{3} \left (x^{2}+3\right ) y^{\prime \prime }+5 y^{\prime } x -\left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.217

3371

\begin{align*} 2 y^{\prime \prime } x -\left (x^{3}+1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.957

3372

\begin{align*} y^{\prime \prime } x +y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.707

3373

\begin{align*} y^{\prime \prime } x +y^{\prime }+2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.562

3374

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 \left (x +1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.674

3375

\begin{align*} x^{2} y^{\prime \prime }-x \left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.644

3376

\begin{align*} x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.693

3377

\begin{align*} x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x +9 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.611

3378

\begin{align*} x^{2} y^{\prime \prime }+x \left (x^{2}-1\right ) y^{\prime }+\left (-x^{2}+1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.707

3379

\begin{align*} x^{2} y^{\prime \prime }+x \left (2 x -1\right ) y^{\prime }+x \left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.885

3380

\begin{align*} x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.795

3381

\begin{align*} x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-\left (3 x^{2}+2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.824

3382

\begin{align*} \left (1-x \right ) x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-9 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.916

3383

\begin{align*} \left (-x^{2}+x \right ) y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _exact, _linear, _homogeneous]]

0.855

3384

\begin{align*} x^{2} y^{\prime \prime }+x \left (x -7\right ) y^{\prime }+\left (x +12\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

3.852

3385

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (x -4\right ) y^{\prime }+4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

3.892

3386

\begin{align*} x^{2} y^{\prime \prime }+x \left (-x^{2}+3\right ) y^{\prime }-3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

3.796

3387

\begin{align*} y^{\prime \prime } x +3 y^{\prime }-y&=x \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

3.167

3388

\begin{align*} y^{\prime \prime } x +3 y^{\prime }-y&=x \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

3.137

3389

\begin{align*} y^{\prime \prime } x +y^{\prime }-2 y x&=x^{2} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.666

3390

\begin{align*} y^{\prime \prime } x -y^{\prime } x +y&=x^{3} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

3.263

3391

\begin{align*} \left (1-2 x \right ) y^{\prime \prime }+4 y^{\prime } x -4 y&=x^{2}-x \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.538

3392

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +12\right ) y&=x^{2}+x \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

2.219

3393

\begin{align*} x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (x^{2}+3\right ) y^{\prime }+y&=-2 x^{2}+x \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.964

3394

\begin{align*} 3 x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y&=-x^{3}+x \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

1.105

3395

\begin{align*} 9 x^{2} y^{\prime \prime }+\left (3 x +2\right ) y&=x^{4}+x^{2} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.940

3396

\begin{align*} 9 x^{2} y^{\prime \prime }+10 y^{\prime } x +y&=x -1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.783

3397

\begin{align*} 2 x^{2} y^{\prime \prime }+\left (-x^{2}+x \right ) y^{\prime }-y&=x^{3}+1 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

0.961

3398

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=6 \left (-x^{2}+1\right )^{2} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.402

3399

\begin{align*} \left (x^{2}+2 x \right ) y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+2 y&=x^{2} \left (2+x \right )^{2} \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

1.187

3400

\begin{align*} 2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y&=x \left (x^{2}+x +1\right ) \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _linear, _nonhomogeneous]]

1.026