2.2.41 Problems 4001 to 4100

Table 2.83: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

4001

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

3.180

4002

\[ {}2 x y^{3}+y \cos \left (x \right )+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

82.871

4003

\[ {}1 = \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} \]

[_exact, _rational, _Riccati]

2.919

4004

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

26.980

4005

\[ {}y x -1+\left (x^{2}-y x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

2.629

4006

\[ {}\left (x +3 x^{3} y^{4}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

33.302

4007

\[ {}\left (x -1-y^{2}\right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.838

4008

\[ {}y-\left (x +x y^{3}\right ) y^{\prime } = 0 \]

[_separable]

12.589

4009

\[ {}y^{\prime } x = x^{5}+x^{3} y^{2}+y \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

3.792

4010

\[ {}\left (x +y\right ) y^{\prime } = -x +y \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

12.131

4011

\[ {}y^{\prime } x = y+x^{2}+9 y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

9.241

4012

\[ {}y^{\prime } x -3 y = x^{4} \]

[_linear]

2.855

4013

\[ {}y^{\prime }+y = \frac {1}{{\mathrm e}^{2 x}+1} \]

[_linear]

2.802

4014

\[ {}2 y x +\left (x^{2}+1\right ) y^{\prime } = \cot \left (x \right ) \]

[_linear]

2.302

4015

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

[[_linear, ‘class A‘]]

9.241

4016

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right ) \]

[_linear]

3.305

4017

\[ {}2 y-x^{3} = y^{\prime } x \]

[_linear]

8.297

4018

\[ {}\left (1-y x \right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.381

4019

\[ {}2 x +3 y+1+\left (2 y-3 x +5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11.632

4020

\[ {}y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

40.391

4021

\[ {}y^{2} = \left (x^{3}-y x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

17.071

4022

\[ {}x^{2} y^{3}+y = \left (x^{3} y^{2}-x \right ) y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational]

11.023

4023

\[ {}y^{\prime } x +y = x \cos \left (x \right ) \]

[_linear]

2.378

4024

\[ {}\left (y x -x^{2}\right ) y^{\prime } = y^{2} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

54.627

4025

\[ {}\left ({\mathrm e}^{x}-3 x^{2} y^{2}\right ) y^{\prime }+y \,{\mathrm e}^{x} = 2 x y^{3} \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.823

4026

\[ {}y+x^{2} = y^{\prime } x \]

[_linear]

8.240

4027

\[ {}y^{\prime } x +y = x^{2} \cos \left (x \right ) \]

[_linear]

2.450

4028

\[ {}6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.503

4029

\[ {}\cos \left (x +y\right )-x \sin \left (x +y\right ) = x \sin \left (x +y\right ) y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _exact]

14.177

4030

\[ {}y^{2} {\mathrm e}^{y x}+\cos \left (x \right )+\left ({\mathrm e}^{y x}+x y \,{\mathrm e}^{y x}\right ) y^{\prime } = 0 \]

[_exact]

69.405

4031

\[ {}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

11.996

4032

\[ {}y^{\prime }+2 y x = {\mathrm e}^{-x^{2}} \]

[_linear]

2.014

4033

\[ {}y^{2}-3 y x -2 x^{2} = \left (x^{2}-y x \right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

32.842

4034

\[ {}2 y x +\left (x^{2}+1\right ) y^{\prime } = 4 x^{3} \]

[_linear]

8.128

4035

\[ {}{\mathrm e}^{x} \sin \left (y\right )-y \sin \left (y x \right )+\left ({\mathrm e}^{x} \cos \left (y\right )-x \sin \left (y x \right )\right ) y^{\prime } = 0 \]

[_exact]

85.329

4036

\[ {}\left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime } = 2 y x -{\mathrm e}^{y}-x \]

[_exact]

3.335

4037

\[ {}{\mathrm e}^{x} \left (x +1\right ) = \left (x \,{\mathrm e}^{x}-y \,{\mathrm e}^{y}\right ) y^{\prime } \]

[‘y=_G(x,y’)‘]

8.688

4038

\[ {}2 y x +x^{2} y^{\prime } = 0 \]

[_separable]

4.545

4039

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11.263

4040

\[ {}\ln \left (x \right ) y^{\prime }+\frac {x +y}{x} = 0 \]

[_linear]

2.378

4041

\[ {}\cos \left (y\right )-x \sin \left (y\right ) y^{\prime } = \sec \left (x \right )^{2} \]
i.c.

[_exact]

73.284

4042

\[ {}y \sin \left (\frac {x}{y}\right )+x \cos \left (\frac {x}{y}\right )-1+\left (x \sin \left (\frac {x}{y}\right )-\frac {x^{2} \cos \left (\frac {x}{y}\right )}{y}\right ) y^{\prime } = 0 \]

[_exact]

85.066

4043

\[ {}\frac {x}{x^{2}+y^{2}}+\frac {y}{x^{2}}+\left (\frac {y}{x^{2}+y^{2}}-\frac {1}{x}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

335.118

4044

\[ {}x^{2} \left (1+y^{2}\right ) y^{\prime }+y^{2} \left (x^{2}+1\right ) = 0 \]

[_separable]

9.882

4045

\[ {}x \left (x -1\right ) y^{\prime } = \cot \left (y\right ) \]

[_separable]

7.606

4046

\[ {}r y^{\prime } = \frac {\left (a^{2}-r^{2}\right ) \tan \left (y\right )}{a^{2}+r^{2}} \]

[_separable]

12.216

4047

\[ {}\sqrt {x^{2}+1}\, y^{\prime }+\sqrt {1+y^{2}} = 0 \]

[_separable]

18.173

4048

\[ {}y^{\prime } = \frac {x \left (1+y^{2}\right )}{y \left (x^{2}+1\right )} \]
i.c.

[_separable]

15.033

4049

\[ {}y^{2} y^{\prime } = 2+3 y^{6} \]
i.c.

[_quadrature]

5.126

4050

\[ {}\cos \left (y\right )^{2}+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

12.266

4051

\[ {}y^{\prime } = \frac {x^{3} {\mathrm e}^{x^{2}}}{y \ln \left (y\right )} \]

[_separable]

8.947

4052

\[ {}x \cos \left (y\right )^{2}+{\mathrm e}^{x} \tan \left (y\right ) y^{\prime } = 0 \]

[_separable]

33.195

4053

\[ {}x \left (1+y^{2}\right )+\left (2 y+1\right ) {\mathrm e}^{-x} y^{\prime } = 0 \]

[_separable]

4.329

4054

\[ {}x y^{3}+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

[_separable]

4.574

4055

\[ {}x \cos \left (y\right )^{2}+\tan \left (y\right ) y^{\prime } = 0 \]

[_separable]

95.652

4056

\[ {}x y^{3}+\left (1+y\right ) {\mathrm e}^{-x} y^{\prime } = 0 \]

[_separable]

11.782

4057

\[ {}y^{\prime }+\frac {x}{y}+2 = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.606

4058

\[ {}y^{\prime } x -y = x \cot \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

46.014

4059

\[ {}x \cos \left (\frac {y}{x}\right )^{2}-y+y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

18.961

4060

\[ {}y^{\prime } x = y \left (1+\ln \left (y\right )-\ln \left (x \right )\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

30.804

4061

\[ {}y x +\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

49.836

4062

\[ {}\left (1-{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

27.725

4063

\[ {}x^{2}-y x +y^{2}-x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

34.896

4064

\[ {}\left (3+2 x +4 y\right ) y^{\prime } = 1+x +2 y \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.204

4065

\[ {}y^{\prime } = \frac {2 x +y-1}{x -y-2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

29.322

4066

\[ {}y+2 = \left (2 x +y-4\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

18.258

4067

\[ {}y^{\prime } = \sin \left (x -y\right )^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

22.175

4068

\[ {}y^{\prime } = \left (x +1\right )^{2}+\left (4 y+1\right )^{2}+8 y x +1 \]

[[_homogeneous, ‘class C‘], _Riccati]

57.603

4069

\[ {}3 x^{2}+6 x y^{2}+\left (6 x^{2} y+4 y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

3.983

4070

\[ {}2 x^{2}-x y^{2}-2 y+3-\left (x^{2} y+2 x \right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9.832

4071

\[ {}x y^{2}+x -2 y+3+\left (x^{2} y-2 x -2 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.121

4072

\[ {}3 y \left (x^{2}-1\right )+\left (x^{3}+8 y-3 x \right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2.747

4073

\[ {}x^{2}+\ln \left (y\right )+\frac {x y^{\prime }}{y} = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

12.447

4074

\[ {}2 x \left (3 x +y-y \,{\mathrm e}^{-x^{2}}\right )+\left (x^{2}+3 y^{2}+{\mathrm e}^{-x^{2}}\right ) y^{\prime } = 0 \]

[_exact]

69.194

4075

\[ {}3+y+2 y^{2} \sin \left (x \right )^{2}+\left (x +2 y x -y \sin \left (2 x \right )\right ) y^{\prime } = 0 \]

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

77.520

4076

\[ {}2 y x +\left (x^{2}+2 y x +y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

121.515

4077

\[ {}x^{2}-\sin \left (y\right )^{2}+x \sin \left (2 y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

12.660

4078

\[ {}y \left (2 x -y+2\right )+2 \left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.441

4079

\[ {}4 y x +3 y^{2}-x +x \left (x +2 y\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.066

4080

\[ {}y+x \left (y^{2}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

14.836

4081

\[ {}x^{2}+2 x +y+\left (3 x^{2} y-x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

9.017

4082

\[ {}y^{2}+\left (y x +y^{2}-1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

2.352

4083

\[ {}3 x^{2}+3 y^{2}+x \left (x^{2}+3 y^{2}+6 y\right ) y^{\prime } = 0 \]

[_rational]

2.425

4084

\[ {}2 y \left (x +y+2\right )+\left (y^{2}-x^{2}-4 x -1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

15.153

4085

\[ {}2+y^{2}+2 x +2 y y^{\prime } = 0 \]

[_rational, _Bernoulli]

3.322

4086

\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]

[_rational]

2.631

4087

\[ {}y \left (x +y\right )+\left (x +2 y-1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.418

4088

\[ {}2 x \left (x^{2}-\sin \left (y\right )+1\right )+\left (x^{2}+1\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

5.659

4089

\[ {}x^{2}+y+y^{2}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

11.357

4090

\[ {}x -\sqrt {x^{2}+y^{2}}+\left (y-\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

113.238

4091

\[ {}y \sqrt {1+y^{2}}+\left (x \sqrt {1+y^{2}}-y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16.023

4092

\[ {}y^{2}-\left (y x +x^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

19.836

4093

\[ {}y-2 x^{3} \tan \left (\frac {y}{x}\right )-y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘]]

11.952

4094

\[ {}2 x^{2} y^{2}+y+\left (x^{3} y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.131

4095

\[ {}y^{2}+\left (y x +\tan \left (y x \right )\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘]]

71.860

4096

\[ {}2 x^{2} y^{4}-y+\left (4 x^{3} y^{3}-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

23.493

4097

\[ {}x^{2}+y^{3}+y+\left (x^{3}+y^{2}-x \right ) y^{\prime } = 0 \]

[_rational]

2.790

4098

\[ {}y \left (1+y^{2}\right )+x \left (y^{2}-x +1\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

4.233

4099

\[ {}y^{2}+\left ({\mathrm e}^{x}-y\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

9.437

4100

\[ {}x^{2} y^{2}-2 y+\left (x^{3} y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.660