2.14.30.28 problem 2928 out of 2993

Link to actual problem [14806] \[ \boxed {5 x y^{\prime \prime }+8 y^{\prime }-y x=0} \] With the expansion point for the power series method at \(x = 0\).

type detected by program

{"second order series method. Regular singular point. Difference not integer"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\operatorname {BesselI}\left (\frac {3}{10}, \frac {\sqrt {5}\, x}{5}\right )}{x^{\frac {3}{10}}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{\frac {3}{10}} y}{\operatorname {BesselI}\left (\frac {3}{10}, \frac {\sqrt {5}\, x}{5}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\operatorname {BesselK}\left (\frac {3}{10}, \frac {\sqrt {5}\, x}{5}\right )}{x^{\frac {3}{10}}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{\frac {3}{10}} y}{\operatorname {BesselK}\left (\frac {3}{10}, \frac {\sqrt {5}\, x}{5}\right )}\right ] \\ \end{align*}