2.2.42 Problems 4101 to 4200

Table 2.85: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

4101

\[ {}2 x^{3} y+y^{3}-\left (x^{4}+2 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

62.418

4102

\[ {}1+y \cos \left (x \right )-\sin \left (x \right ) y^{\prime } = 0 \]

[_linear]

0.657

4103

\[ {}\left (\sin \left (y\right )^{2}+x \cot \left (y\right )\right ) y^{\prime } = 0 \]

[_quadrature]

6.133

4104

\[ {}1-\left (y-2 y x \right ) y^{\prime } = 0 \]

[_separable]

9.194

4105

\[ {}1-\left (1+2 x \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.251

4106

\[ {}\left (y^{3}+\frac {x}{y}\right ) y^{\prime } = 1 \]

[[_homogeneous, ‘class G‘], _rational]

12.523

4107

\[ {}1+\left (x -y^{2}\right ) y^{\prime } = 0 \]

[[_1st_order, _with_exponential_symmetries]]

1.658

4108

\[ {}y^{2}+\left (y x +y^{2}-1\right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

1.806

4109

\[ {}y = \left ({\mathrm e}^{y}+2 y x -2 x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

9.938

4110

\[ {}\left (2 x +3\right ) y^{\prime } = y+\sqrt {2 x +3} \]

[_linear]

0.184

4111

\[ {}y+\left (y^{2} {\mathrm e}^{y}-x \right ) y^{\prime } = 0 \]

[[_1st_order, _with_linear_symmetries]]

3.096

4112

\[ {}y^{\prime } = 1+3 y \tan \left (x \right ) \]

[_linear]

0.394

4113

\[ {}\left (\cos \left (x \right )+1\right ) y^{\prime } = \sin \left (x \right ) \left (\sin \left (x \right )+\sin \left (x \right ) \cos \left (x \right )-y\right ) \]

[_linear]

0.615

4114

\[ {}y^{\prime } = \left (\sin \left (x \right )^{2}-y\right ) \cos \left (x \right ) \]

[_linear]

0.297

4115

\[ {}\left (x +1\right ) y^{\prime }-y = x \left (x +1\right )^{2} \]

[_linear]

0.152

4116

\[ {}1+y+\left (x -y \left (1+y\right )^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

16.014

4117

\[ {}y^{\prime }+y^{2} = x^{2}+1 \]

[_Riccati]

0.882

4118

\[ {}3 y^{\prime } x -3 x y^{4} \ln \left (x \right )-y = 0 \]

[_Bernoulli]

9.295

4119

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}}{x^{4} y+2} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

26.937

4120

\[ {}y \left (6 y^{2}-x -1\right )+2 y^{\prime } x = 0 \]

[_rational, _Bernoulli]

0.955

4121

\[ {}\left (x +1\right ) \left (y^{\prime }+y^{2}\right )-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

0.283

4122

\[ {}x y y^{\prime }+y^{2}-\sin \left (x \right ) = 0 \]

[_Bernoulli]

8.087

4123

\[ {}2 x^{3}-y^{4}+x y^{3} y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.424

4124

\[ {}y^{\prime }-y \tan \left (x \right )+y^{2} \cos \left (x \right ) = 0 \]

[_Bernoulli]

0.580

4125

\[ {}6 y^{2}-x \left (2 x^{3}+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

22.620

4126

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.198

4127

\[ {}y = y^{\prime } x +{y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.818

4128

\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y^{\prime } \]

[_quadrature]

0.293

4129

\[ {}x y^{\prime } \left (y^{\prime }+2\right ) = y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.855

4130

\[ {}x = y^{\prime } \sqrt {1+{y^{\prime }}^{2}} \]

[_quadrature]

1.593

4131

\[ {}2 {y^{\prime }}^{2} \left (y-y^{\prime } x \right ) = 1 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.692

4132

\[ {}y = 2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

237.747

4133

\[ {}{y^{\prime }}^{3}+y^{2} = x y y^{\prime } \]

[[_1st_order, _with_linear_symmetries]]

32.384

4134

\[ {}2 y^{\prime } x -y = y^{\prime } \ln \left (y y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries]]

30.025

4135

\[ {}y = y^{\prime } x -x^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

43.421

4136

\[ {}y \left (y-2 y^{\prime } x \right )^{3} = {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘]]

254.895

4137

\[ {}y^{\prime } x +y = 4 \sqrt {y^{\prime }} \]

[[_homogeneous, ‘class G‘], _dAlembert]

39.665

4138

\[ {}2 y^{\prime } x -y = \ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

43.004

4139

\[ {}x y^{2} \left (y^{\prime } x +y\right ) = 1 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

18.455

4140

\[ {}5 y+{y^{\prime }}^{2} = x \left (x +y^{\prime }\right ) \]

[[_homogeneous, ‘class G‘]]

13.370

4141

\[ {}y^{\prime } = \frac {y+2}{x +1} \]

[_separable]

3.841

4142

\[ {}y^{\prime } x = y-x \,{\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

77.473

4143

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

[_exact, _Bernoulli]

27.375

4144

\[ {}2 \sqrt {y x}-y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

56.287

4145

\[ {}y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

28.619

4146

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

0.059

4147

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+9 y^{\prime }+9 y = 0 \]

[[_3rd_order, _missing_x]]

0.056

4148

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.052

4149

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

[[_3rd_order, _missing_x]]

0.056

4150

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

0.053

4151

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.061

4152

\[ {}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0 \]

[[_high_order, _missing_x]]

0.067

4153

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.225

4154

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

0.065

4155

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y = 0 \]

[[_high_order, _missing_x]]

0.059

4156

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.062

4157

\[ {}y^{\left (6\right )}-64 y = 0 \]

[[_high_order, _missing_x]]

0.086

4158

\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

23.354

4159

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 x} \left (x^{2}-3 x \sin \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

27.119

4160

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \left (x +{\mathrm e}^{x}\right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

45.506

4161

\[ {}y^{\prime \prime }+4 y = \sinh \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

36.431

4162

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cosh \left (x \right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

24.540

4163

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right )+x \cos \left (x \right ) \]

[[_3rd_order, _missing_y]]

1.242

4164

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = {\mathrm e}^{2 x} \sin \left (2 x \right )+2 x^{2} \]

[[_3rd_order, _linear, _nonhomogeneous]]

2.025

4165

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+3 y^{\prime } = x^{2}+x \,{\mathrm e}^{2 x} \]

[[_3rd_order, _missing_y]]

0.181

4166

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime } = 7 x -3 \cos \left (x \right ) \]

[[_high_order, _missing_y]]

0.280

4167

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = \sin \left (x \right ) \cos \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

8.851

4168

\[ {}y^{\prime } = a f \left (x \right ) \]

[_quadrature]

0.351

4169

\[ {}y^{\prime } = x +\sin \left (x \right )+y \]

[[_linear, ‘class A‘]]

2.838

4170

\[ {}y^{\prime } = x^{2}+3 \cosh \left (x \right )+2 y \]

[[_linear, ‘class A‘]]

2.756

4171

\[ {}y^{\prime } = a +b x +c y \]

[[_linear, ‘class A‘]]

9.326

4172

\[ {}y^{\prime } = a \cos \left (b x +c \right )+k y \]

[[_linear, ‘class A‘]]

3.047

4173

\[ {}y^{\prime } = a \sin \left (b x +c \right )+k y \]

[[_linear, ‘class A‘]]

2.787

4174

\[ {}y^{\prime } = a +b \,{\mathrm e}^{k x}+c y \]

[[_linear, ‘class A‘]]

11.191

4175

\[ {}y^{\prime } = x \left (x^{2}-y\right ) \]

[_linear]

2.458

4176

\[ {}y^{\prime } = x \left ({\mathrm e}^{-x^{2}}+a y\right ) \]

[_linear]

2.313

4177

\[ {}y^{\prime } = x^{2} \left (a \,x^{3}+b y\right ) \]

[_linear]

11.932

4178

\[ {}y^{\prime } = a \,x^{n} y \]

[_separable]

4.139

4179

\[ {}y^{\prime } = \sin \left (x \right ) \cos \left (x \right )+y \cos \left (x \right ) \]

[_linear]

10.430

4180

\[ {}y^{\prime } = {\mathrm e}^{\sin \left (x \right )}+y \cos \left (x \right ) \]

[_linear]

2.980

4181

\[ {}y^{\prime } = y \cot \left (x \right ) \]

[_separable]

4.122

4182

\[ {}y^{\prime } = 1-y \cot \left (x \right ) \]

[_linear]

9.036

4183

\[ {}y^{\prime } = x \csc \left (x \right )-y \cot \left (x \right ) \]

[_linear]

3.570

4184

\[ {}y^{\prime } = \left (2 \csc \left (2 x \right )+\cot \left (x \right )\right ) y \]

[_separable]

15.875

4185

\[ {}y^{\prime } = \sec \left (x \right )-y \cot \left (x \right ) \]

[_linear]

3.812

4186

\[ {}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right )+y \cot \left (x \right ) \]

[_linear]

3.577

4187

\[ {}y^{\prime }+\csc \left (x \right )+2 y \cot \left (x \right ) = 0 \]

[_linear]

10.121

4188

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \sec \left (x \right )^{2}-2 y \cot \left (2 x \right ) \]

[_linear]

57.180

4189

\[ {}y^{\prime } = 2 \cot \left (x \right )^{2} \cos \left (2 x \right )-2 y \csc \left (2 x \right ) \]

[_linear]

8.155

4190

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \left (\sin \left (x \right )^{3}+y\right ) \]

[_linear]

43.731

4191

\[ {}y^{\prime } = 4 \csc \left (x \right ) x \left (1-\tan \left (x \right )^{2}+y\right ) \]

[_linear]

32.772

4192

\[ {}y^{\prime } = y \sec \left (x \right ) \]

[_separable]

5.763

4193

\[ {}y^{\prime }+\tan \left (x \right ) = \left (1-y\right ) \sec \left (x \right ) \]

[_linear]

11.711

4194

\[ {}y^{\prime } = y \tan \left (x \right ) \]

[_separable]

4.636

4195

\[ {}y^{\prime } = \cos \left (x \right )+y \tan \left (x \right ) \]

[_linear]

3.074

4196

\[ {}y^{\prime } = \cos \left (x \right )-y \tan \left (x \right ) \]

[_linear]

10.361

4197

\[ {}y^{\prime } = \sec \left (x \right )-y \tan \left (x \right ) \]

[_linear]

3.517

4198

\[ {}y^{\prime } = \sin \left (2 x \right )+y \tan \left (x \right ) \]

[_linear]

3.394

4199

\[ {}y^{\prime } = \sin \left (2 x \right )-y \tan \left (x \right ) \]

[_linear]

10.790

4200

\[ {}y^{\prime } = \sin \left (x \right )+2 y \tan \left (x \right ) \]

[_linear]

3.072