# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime }-y \tan \left (x \right ) = x
\] |
[_linear] |
✓ |
1.659 |
|
\[
{}y^{\prime } = {\mathrm e}^{x -2 y}
\] |
[_separable] |
✓ |
3.038 |
|
\[
{}y^{\prime } = \frac {x^{2}+y^{2}}{2 x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
2.194 |
|
\[
{}y^{\prime } x = x +y
\] |
[_linear] |
✓ |
1.621 |
|
\[
{}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
2.513 |
|
\[
{}y^{\prime } = {\mathrm e}^{x} \sin \left (x \right )
\] |
[_quadrature] |
✓ |
0.864 |
|
\[
{}y^{\prime }-3 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x}
\] |
[[_linear, ‘class A‘]] |
✓ |
1.756 |
|
\[
{}y^{\prime } = x +\frac {1}{x}
\] |
[_quadrature] |
✓ |
0.592 |
|
\[
{}y^{\prime } x +2 y = \left (3 x +2\right ) {\mathrm e}^{3 x}
\] |
[_linear] |
✓ |
1.799 |
|
\[
{}2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right ) = 0
\] |
[_separable] |
✓ |
4.706 |
|
\[
{}x y y^{\prime } = \left (x +1\right ) \left (1+y\right )
\] |
[_separable] |
✓ |
1.693 |
|
\[
{}y^{\prime } = \frac {2 x -y}{y+2 x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
20.020 |
|
\[
{}y^{\prime } = \frac {3 x -y+1}{3 y-x +5}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
13.152 |
|
\[
{}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1607.149 |
|
\[
{}x +\left (2-x +2 y\right ) y^{\prime } = x y \left (y^{\prime }-1\right )
\] |
[_quadrature] |
✓ |
0.567 |
|
\[
{}y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = 1
\] |
[_linear] |
✓ |
2.184 |
|
\[
{}\left (x +y^{2}\right ) y^{\prime }+y-x^{2} = 0
\] |
[_exact, _rational] |
✓ |
2.453 |
|
\[
{}y^{\prime \prime }+8 y^{\prime }+15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.109 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.108 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.168 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.193 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.085 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.137 |
|
\[
{}2 y^{\prime \prime }+3 y^{\prime } = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.034 |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.368 |
|
\[
{}4 y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.263 |
|
\[
{}y^{\prime \prime } = 0
\] |
[[_2nd_order, _quadrature]] |
✓ |
2.099 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+5 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.691 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.249 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.320 |
|
\[
{}y^{\prime \prime }+y = x^{3}+x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.335 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.359 |
|
\[
{}y^{\prime \prime }+2 y = x +{\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.455 |
|
\[
{}y^{\prime \prime }+2 y = {\mathrm e}^{x}+2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
73.287 |
|
\[
{}y^{\prime \prime }-y = 2 \,{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.353 |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.138 |
|
\[
{}y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.384 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+3 y = x^{3}+\sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
77.881 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.461 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}+2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.255 |
|
\[
{}y^{\prime \prime }+2 n y^{\prime }+n^{2} y = A \cos \left (p x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.615 |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.070 |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-12 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.115 |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.083 |
|
\[
{}y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.075 |
|
\[
{}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.070 |
|
\[
{}y^{\prime \prime \prime }+4 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.075 |
|
\[
{}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.081 |
|
\[
{}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.081 |
|
\[
{}y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.093 |
|
\[
{}y^{\prime \prime \prime }-y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.075 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.586 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-2 y = x^{2}+1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.661 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{8} = \frac {\sin \left (x \right )}{8}-\frac {\cos \left (x \right )}{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
43.319 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x}-2 \,{\mathrm e}^{2 x}+\sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.234 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x}+x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.454 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+2 y = x \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.785 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.785 |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 x \,{\mathrm e}^{2 x}+{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.174 |
|
\[
{}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \cos \left (2 x +3\right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
0.204 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.363 |
|
\[
{}y^{\prime \prime }+9 y = 8 \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.694 |
|
\[
{}25 y^{\prime \prime }-30 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.689 |
|
\[
{}9 y^{\prime \prime }-6 y^{\prime }+y = \left (4 x^{2}+24 x +18\right ) {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.875 |
|
\[
{}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
0.127 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=y_{2} \\ y_{2}^{\prime }=3 y_{2}-2 y_{1} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.428 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+y_{2} \\ y_{2}^{\prime }=3 y_{2}-y_{1} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.388 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}-y_{2} \\ y_{2}^{\prime }=2 y_{1}+3 y_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.518 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=4 y_{2} \\ y_{2}^{\prime }=4 y_{2}-y_{1} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.440 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+y_{2} \\ y_{2}^{\prime }=y_{1}-y_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.512 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=y_{2} \\ y_{2}^{\prime }=y_{1} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.388 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=y_{2}-y_{1} \\ y_{2}^{\prime }=3 y_{1}-4 y_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.619 |
|
\[
{}\left [\begin {array}{c} 2 y_{1}^{\prime }=y_{1}+y_{2} \\ 2 y_{2}^{\prime }=5 y_{2}-3 y_{1} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.532 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=-2 y_{2} \\ y_{2}^{\prime }=y_{1}+2 y_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.543 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=1 \\ y_{2}^{\prime }=2 y_{1} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.425 |
|
\[
{}\left [\begin {array}{c} 2 y_{1}^{\prime }+y_{2}^{\prime }-4 y_{1}-y_{2}={\mathrm e}^{x} \\ y_{1}^{\prime }+3 y_{1}+y_{2}=0 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.608 |
|
\[
{}\left [\begin {array}{c} y_{1}^{\prime }=y_{2} \\ y_{2}^{\prime }=-y_{1}+y_{3} \\ y_{3}^{\prime }=-y_{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.575 |
|
\[
{}y^{\prime \prime }+\frac {y}{x^{2}} = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.599 |
|
\[
{}y^{\prime \prime }-\frac {\left (-3 x^{2}+x \right ) y^{\prime }}{2 x^{3}+2 x^{2}}+\frac {y}{2 x^{3}+2 x^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.851 |
|
\[
{}y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }-\frac {y}{x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.829 |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0
\] |
[_Lienard] |
✓ |
0.731 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }+\left (\frac {1}{4 x^{2}}-1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.911 |
|
\[
{}y^{\prime \prime }-\frac {\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right )}{x \left (-x^{2}+2\right )} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.010 |
|
\[
{}y^{\prime \prime }-\frac {3 y^{\prime }}{x \left (1-x \right )}+\frac {2 y}{x \left (1-x \right )} = 0
\] |
[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.847 |
|
\[
{}y^{\prime \prime }+\frac {\left (1-x \right ) y^{\prime }}{2 x}-\frac {y}{4 x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.800 |
|
\[
{}y^{\prime \prime }-\frac {y^{\prime }}{2 x}+\frac {y}{4 x} = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.828 |
|
\[
{}y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1+\frac {1}{x^{2}}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.809 |
|
\[
{}y^{\prime \prime }+\frac {\left (1-5 x \right ) y^{\prime }}{-x^{2}+x}-\frac {4 y}{-x^{2}+x} = 0
\] |
[_Jacobi] |
✓ |
0.829 |
|
\[
{}y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x \left (x +1\right )}-\frac {y}{x \left (x +1\right )} = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.840 |
|
\[
{}y y^{\prime } = x
\] |
[_separable] |
✓ |
3.639 |
|
\[
{}y^{\prime }-y = x^{3}
\] |
[[_linear, ‘class A‘]] |
✓ |
1.520 |
|
\[
{}y^{\prime }+y \cot \left (x \right ) = x
\] |
[_linear] |
✓ |
1.365 |
|
\[
{}y^{\prime }+y \cot \left (x \right ) = \tan \left (x \right )
\] |
[_linear] |
✓ |
1.609 |
|
\[
{}y^{\prime }+y \tan \left (x \right ) = \cot \left (x \right )
\] |
[_linear] |
✓ |
1.570 |
|
\[
{}y^{\prime }+y \ln \left (x \right ) = x^{-x}
\] |
[_linear] |
✓ |
1.467 |
|
\[
{}y^{\prime } x +y = x
\] |
[_linear] |
✓ |
2.357 |
|
\[
{}y^{\prime } x -y = x^{3}
\] |
[_linear] |
✓ |
1.595 |
|
\[
{}y^{\prime } x +n y = x^{n}
\] |
[_linear] |
✓ |
0.968 |
|
\[
{}y^{\prime } x -n y = x^{n}
\] |
[_linear] |
✓ |
0.792 |
|
\[
{}\left (x^{3}+x \right ) y^{\prime }+y = x
\] |
[_linear] |
✓ |
2.843 |
|