2.12.1.30 problem 30 out of 378

Link to actual problem [3207] \[ \boxed {y+\left (y^{2} {\mathrm e}^{y}-x \right ) y^{\prime }=0} \]

type detected by program

{"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"}

type detected by Maple

[[_1st_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {y^{2}}{{\mathrm e}^{y} y^{2}-x}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x}{y}+{\mathrm e}^{y}\right ] \\ \end{align*}

My program’s symgen result This shows my program’s found \(\xi ,\eta \) and the corresponding ODE in canonical coordinates \(R,S\).\begin{align*} \xi &= 0 \\ \eta &=\frac {y^{2}}{{\mathrm e}^{y} y^{2}-x} \\ \frac {dS}{dR} &= 0 \\ \end{align*}