2.13.1.13 problem 13 out of 223

Link to actual problem [673] \[ \boxed {x y^{\prime \prime }-y^{\prime }+4 y x^{3}=0} \] Given that one solution of the ode is \begin {align*} y_1 &= \sin \left (x^{2}\right ) \end {align*}

type detected by program

{"reduction_of_order", "second_order_bessel_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change_of_variable_on_x_method_2"}

type detected by Maple

[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\).\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= {\mathrm e}^{i x \sqrt {x^{2}}}\right ] \\ \left [R &= x, S \left (R \right ) &= {\mathrm e}^{-i x \sqrt {x^{2}}} y\right ] \\ \end{align*}