3.12 HW 11

  3.12.1 chapter 15, problem 2.11
  3.12.2 chapter 15, problem 2.17
  3.12.3 chapter 15, problem 2.18
  3.12.4 chapter 15, problem 2.2
  3.12.5 chapter 15, problem 2.21
  3.12.6 chapter 15, problem 2.22
  3.12.7 chapter 15, problem 2.23
  3.12.8 chapter 15, problem 2.3
  3.12.9 chapter 15, problem 2.4
  3.12.10 chapter 15, problem 2.5
  3.12.11 chapter 15, problem 2.9
  3.12.12 chapter 15, problem 3.11
  3.12.13 chapter 15, problem 3.24
  3.12.14 chapter 15, problem 3.25
  3.12.15 chapter 15, problem 3.29
  3.12.16 chapter 15, problem 3.30
  3.12.17 chapter 15, problem 3.4
  3.12.18 chapter 15, problem 3.6
  3.12.19 chapter 15, problem 3.8
PDF (letter size)
PDF (legal size)

3.12.1 chapter 15, problem 2.11

Problem Find the inverse transform of the function \(F\left ( p\right ) =\frac {3p+2}{3p^{2}+5p-2}\)

Solution

Need to simplify the above expression to some expressions which are shown in the table on page 636.

\begin {align} F(p) & =\frac {3p+2}{3p^{2}+5p-2}\nonumber \\ & =\frac {2}{\left (3p-1\right ) \left (p+2\right ) }+\frac {3p}{\left ( 3p-1\right ) \left (p+2\right ) } \tag {1} \end {align}

Expanding in partial fractions. For the first term in (1):

\begin {align*} \frac {1}{\left (3p-1\right ) \left (p+2\right ) } & =\frac {A}{\left ( 3p-1\right ) }+\frac {B}{\left (p+2\right ) }=\frac {A\left (p+2\right ) +B\left (3p-1\right ) }{\left (3p-1\right ) \left (p+2\right ) }\\ A\left (p+2\right ) +B\left (3p-1\right ) & =1\\ Ap+2A+3Bp-B & =1 \end {align*}

Hence \(2A-B=1\) and \(\left (A+3B\right ) =0\) which gives \(A=\frac {1}{2}+\frac {B}{2}\). Therefore \(\frac {1}{2}+\frac {B}{2}+3B=0\) \(\ \)  or \(\ \ \frac {1+B+6B}{2}\ =0\) or \(1+7B=0\) or \(B=\frac {-1}{7}\). Hence \(A=\frac {1}{2}+\frac {\frac {-1}{7}}{2}=\frac {1}{2}-\frac {1}{14}=\frac {\ 7-1}{14}=\frac {\ 6}{14}\).

Now the first term in (1) can be written as \(2\left (\frac {A}{\left ( 3p-1\right ) }+\frac {B}{\left (p+2\right ) }\right ) \) or \(2\left ( \frac {\frac {\ 6}{14}}{\left (3p-1\right ) }+\frac {\frac {-1}{7}}{\left ( p+2\right ) }\right ) \) or

\begin {equation} \frac {\ 6}{7\left (3p-1\right ) }-\frac {2}{7\left (p+2\right ) } \tag {2} \end {equation}

Doing partial fraction on the second term in (1) which is \(\frac {3p}{\left ( 3p-1\right ) \left (p+2\right ) }\) gives

\begin {align*} \frac {p}{\left (3p-1\right ) \left (p+2\right ) } & =\frac {A}{\left ( 3p-1\right ) }+\frac {B}{\left (p+2\right ) }=\frac {A\left (p+2\right ) +B\left (3p-1\right ) }{\left (3p-1\right ) \left (p+2\right ) }\\ A\left (p+2\right ) +B\left (3p-1\right ) & =p\\ Ap+2A+3Bp-B & =p \end {align*}

Hence \(2A-B=0\) and \(\left (A+3B\right ) =1\), therefore \(A=\frac {B}{2}\). Hence \(\left (\frac {B}{2}+3B\right ) =1\) or \(\frac {B+6B}{2}=1\) or \(7B=2\) or \(B=\frac {2}{7}\). Therefore \(A=\frac {B}{2}=\frac {2}{14}\). Hence \(\frac {3p}{\left (3p-1\right ) \left (p+2\right ) }=3\left (\frac {A}{\left ( 3p-1\right ) }+\frac {B}{\left (p+2\right ) }\right ) =3\left (\frac {\frac {2}{14}}{\left (3p-1\right ) }+\frac {\frac {2}{7}}{\left (p+2\right ) }\right ) \) or

\begin {equation} \frac {3}{7\left (3p-1\right ) }+\frac {6}{7\left (p+2\right ) } \tag {3} \end {equation}

Combining (2) and (3) gives

\begin {align*} F(p) & =\frac {\ 6}{7\left (3p-1\right ) }-\frac {2}{7\left (p+2\right ) }+\frac {3}{7\left (3p-1\right ) }+\frac {6}{7\left (p+2\right ) }\\ & =\frac {6}{7}\frac {\ 1}{\left (3p-1\right ) }-\frac {2}{7}\frac {1}{\left ( p+2\right ) }+\frac {2}{7}\frac {1}{\left (3p-1\right ) }+\frac {6}{7}\frac {1}{\left (p+2\right ) }\\ & =\frac {4}{7}\frac {1}{\left (p+2\right ) }+\frac {9}{7}\frac {\ 1}{\left ( 3p-1\right ) }\\ & =\frac {4}{7}\frac {1}{\left (p+2\right ) }+\frac {9}{21}\frac {\ 1}{\left ( p-\frac {1}{3}\right ) } \end {align*}

Now we can use the table to find the inverse transform. Use property L2, which says \[\mathcal {L}\left (e^{-at}\right ) =\frac {1}{p+a}\] Hence , setting \(a=2,\) gives \(\mathcal {L}\left (e^{-2t}\right ) =\frac {1}{p+2}\) and setting \(a=-\frac {1}{3}\) gives \(\mathcal {L}\left (e^{-\frac {1}{3}t}\right ) ^{\frac {1}{3}t}=\frac {1}{p-\frac {1}{3}}\). Hence \(f\relax (t) =\frac {4}{7}e^{-2t}+\frac {9}{21}e^{\frac {1}{3}t}\) and the inverse Laplace transform is \[ \ f\relax (t) =\frac {4}{7}e^{-2t}+\frac {3}{7}e^{\frac {1}{3}t}\]

3.12.2 chapter 15, problem 2.17

Problem Use L32 and L11 to obtain \(\mathcal {L}\left (t^{2}\ \sin at\right ) \)

Solution

\begin {align} \mathcal {L}\left (t^{n}f\relax (t) \right ) & =\left (-1\right ) ^{n}\frac {d^{n}F\relax (p) }{dp^{n}}\tag {L32}\\\mathcal {L}\left (t\ \sin at\right ) & =\ \frac {2ap}{\left (p^{2}+a^{2}\right ) ^{2}} \tag {L11} \end {align}

we set \(f\relax (t) =t\ \sin at\) then we can write using L32

\begin {equation} \mathcal {L}\left (t\ f\relax (t) \right ) =\left (-1\right ) \frac {d\mathcal {L}\left (f\relax (t) \right ) }{dp} \tag {1} \end {equation}

But \(\mathcal {L}\left (f\relax (t) \right ) =\mathcal {L}\left (t\ \sin at\right ) \)  \(=\ \frac {2ap}{\left (p^{2}+a^{2}\right ) ^{2}}\ \)from table L11 (1) becomes

\begin {align*} \mathcal {L}\left (t\ f\relax (t) \right ) & =-\frac {d}{dp}\left (\frac {2ap}{\left (p^{2}+a^{2}\right ) ^{2}}\right ) \\\mathcal {L}\left (t\times t\ \sin at\right ) & =\ -\left (p\ \frac {-2\times 2a}{\left (p^{2}+a^{2}\right ) ^{3}}\times 2p+\frac {2a}{\left (p^{2}+a^{2}\right ) ^{2}}\times 1\right ) \\\mathcal {L}\left (t^{2}\ \sin at\right ) & =\ \frac {8ap^{2}}{\left (p^{2}+a^{2}\right ) ^{3}}-\frac {2a}{\left (p^{2}+a^{2}\right ) ^{2}}\\ & =\ \frac {8ap^{2}-2a\left (p^{2}+a^{2}\right ) }{\left (p^{2}+a^{2}\right ) ^{3}}\ \\ & =\frac {a\left (8p^{2}-2p^{2}-2a^{2}\right ) }{\left (p^{2}+a^{2}\right ) ^{3}}\\ & =\frac {a\left (6p^{2}-2a^{2}\right ) }{\left (p^{2}+a^{2}\right ) ^{3}} \end {align*}

Or

\[\mathcal {L}\left (t^{2}\ \sin at\right ) =\frac {6ap^{2}-2a^{3}}{\left (p^{2}+a^{2}\right ) ^{3}}\]

3.12.3 chapter 15, problem 2.18

Problem Use L31 to derive L21

Solution

\begin {align} \mathcal {L}\left (\frac {f\relax (t) }{t}\right ) & =\ \int _{u=p}^{\infty }F\relax (u) du\tag {L31}\\\mathcal {L}\left (\ \frac {e^{-at}-e^{-bt}}{t}\right ) & =\ \ln \frac {p+b}{p+a} \tag {L21} \end {align}

we set \(f\relax (t) =e^{-at}-e^{-bt}\) then we can write using L31

\begin {align*} \mathcal {L}\left (\frac {f\relax (t) }{t}\right ) & =\int _{u=p}^{\infty }F\left ( u\right ) du\\ & =\int _{u=p}^{\infty }\mathcal {L}\left [ f\relax (t) \right ] \ \ du \end {align*}

but \(\mathcal {L}\left [ f\relax (t) \right ] =\mathcal {L}\left (e^{-at}-e^{-bt}\right ) =\mathcal {L}\left (e^{-at}\right ) -\mathcal {L}\left (e^{-bt}\right ) =\frac {1}{p+a}-\frac {1}{p+b}\)  By using L2. But since we are using \(u\) in place of \(p\) in integral, we need to call \(p=u\). Hence

\begin {align*} \mathcal {L}\left (\frac {f\relax (t) }{t}\right ) & =\int _{u=p}^{\infty }\left ( \frac {1}{u+a}-\frac {1}{u+b}\right ) \ \ du\\ & =\int _{u=p}^{\infty }\frac {1}{u+a}\ du-\int _{u=p}^{\infty }\frac {1}{u+b}\ \ du\\ & =\left [ \ln \left (u+a\right ) \right ] _{p}^{\infty }-\left [ \ln \left ( u+b\right ) \right ] _{p}^{\infty }\\ & =\left [ \ln \left (\infty +a\right ) -\ln \left (p+a\right ) \right ] -\left [ \ln \left (\infty +b\right ) -\ln \left (p+b\right ) \right ] \\ & =\ln \left (\infty \right ) -\ln \left (p+a\right ) -\ln \left ( \infty \right ) +\ln \left (p+b\right ) \\ & =\ln \left (p+b\right ) -\ln \left (p+a\right ) \end {align*}

but \(\ln A-\ln B=\ln \frac {A}{B}\), therefore

\begin {align*} \mathcal {L}\left (\frac {f\relax (t) }{t}\right ) & =\ \ln \left (p+b\right ) -\ln \left (p+a\right ) \\\mathcal {L}\left (\frac {e^{-at}-e^{-bt}}{t}\right ) & =\ln \left (\frac {p+b}{p+a}\right ) \end {align*}

3.12.4 chapter 15, problem 2.2

Problem Use relation L2 to find L7 and L8 in laplace table.

Solution

\begin {equation} \mathcal {L}\left (e^{-at}\right ) =\frac {1}{p+a} \tag {L2} \end {equation}

for \(\Re \left (p+a\right ) >0\)

\begin {equation} \mathcal {L}\frac {e^{-at}-e^{-bt}}{b-a}=\frac {1}{\left (p+a\right ) \left (p+b\right ) } \tag {L7} \end {equation}

\begin {equation} \mathcal {L}\frac {ae^{-at}-be^{-bt}}{a-b}=\frac {p}{\left (p+a\right ) \left (p+b\right ) } \tag {L8} \end {equation}

For \(\Re \left (p+a\right ) >0\) and \(\Re \left (p+b\right ) >0\). Where \(\mathcal {L}\)\(f(t)\) is the laplace transform of \(f\relax (t) \) defined as \(\mathcal {L}\)\(f\relax (t) =F\relax (p) =\int _{0}^{\infty }e^{-pt}f\left ( t\right ) dt.\)

From the linearity property of the \(\mathcal {L}\) operator, expand the LHS of L7, we get

\[\mathcal {L}\frac {e^{-at}-e^{-bt}}{b-a}=\frac {1}{b-a}\mathcal {L}\left (e^{-at}-e^{-bt}\right ) =\frac {1}{b-a}\left ( \mathcal {L}\left (e^{-at}\right ) -\mathcal {L}\left (e^{-bt}\right ) \right ) \]

Now applying L2 gives for \(\Re \left (p+a\right ) >0\) and \(\Re \left ( p+b\right ) >0\)

\begin {align*} \mathcal {L}\frac {e^{-at}-e^{-bt}}{b-a} & =\frac {1}{b-a}\left (\frac {1}{p+a}-\frac {1}{p+b}\right ) \\ & =\frac {1}{b-a}\left (\ \frac {p+b-\left (p+a\right ) }{\left (p+a\right ) \left (p+b\right ) }\right ) \\ & =\frac {1}{b-a}\left (\ \frac {b-a}{\left (p+a\right ) \left (p+b\right ) }\right ) \\ & =\frac {1}{\left (p+a\right ) \left (p+b\right ) } \end {align*}

For Which is L7 as required to show. Similarly for L8, expand the LHS of L8 we get for \(\Re \left (p+a\right ) >0\) and \(\Re \left (p+b\right ) >0\)

\begin {align*} \mathcal {L}\frac {ae^{-at}-be^{-bt}}{a-b} & =\frac {1}{a-b}\mathcal {L}\left (ae^{-at}-be^{-bt}\right ) \\ & =\frac {1}{a-b}\left ( \mathcal {L}\left (e^{-at}\right ) -\mathcal {L}\left (e^{-bt}\right ) \right ) \\ & =\frac {1}{a-b}\left (a\mathcal {L}\left (e^{-at}\right ) -b\mathcal {L}\left (e^{-bt}\right ) \right ) \\ & =\frac {1}{a-b}\left (a\frac {1}{p+a}-b\frac {1}{p+b}\right ) \\ & =\frac {1}{a-b}\left (\frac {a\left (p+b\right ) -b\left (p+a\right ) }{\left (p+a\right ) \left (p+b\right ) }\right ) \\ & =\frac {1}{a-b}\left (\frac {ap+ab-bp-ba}{\left (p+a\right ) \left ( p+b\right ) }\right ) \\ & =\frac {1}{a-b}\left (\frac {ap-bp}{\left (p+a\right ) \left (p+b\right ) }\right ) \\ & =\frac {1}{a-b}\left (\frac {p\left (a-b\right ) }{\left (p+a\right ) \left (p+b\right ) }\right ) \\ & =\frac {p}{\left (p+a\right ) \left (p+b\right ) } \end {align*}

Which is L8.

3.12.5 chapter 15, problem 2.21

Problem Use L29 and L11 to obtain \(\mathcal {L}\left (te^{-at}\ \sin bt\right ) \)

Solution

\begin {align} \mathcal {L}\left (e^{-at}\ f\relax (t) \right ) & =\ F\left (p+a\right ) \tag {L29}\\\mathcal {L}\left (t\ \sin at\right ) & =\ \ \frac {2ap\ }{\left (p^{2}+a^{2}\right ) ^{2}} \tag {L11} \end {align}

Then from L11 we get

\[\mathcal {L}\left (t\ \sin bt\right ) =\ \ \frac {2bp\ }{\left (p^{2}+b^{2}\right ) ^{2}}\]

Now, let \(p=\left (p+a\right ) \) then from L29, the above becomes

\[\mathcal {L}\left (e^{-at}\ t\ \sin bt\right ) =\ \ \frac {2b\left (p+a\right ) \ }{\left (\left (p+a\right ) ^{2}+b^{2}\right ) ^{2}}\]

3.12.6 chapter 15, problem 2.22

Problem similar to problem 2.21, Use L29 and L12 to obtain \(\mathcal {L}\left (te^{-at}\ \cos bt\right ) \)

Solution

\begin {align} \mathcal {L}\left (e^{-at}\ f\relax (t) \right ) & =\ F\left (p+a\right ) \tag {L29}\\\mathcal {L}\left (t\ \cos at\right ) & =\ \ \frac {p^{2}-a^{2}\ }{\left (p^{2}+a^{2}\right ) ^{2}} \tag {L12} \end {align}

then from L12 we get

\[\mathcal {L}\left (t\ \cos bt\right ) =\ \ \frac {p^{2}-b^{2}\ }{\left (p^{2}+b^{2}\right ) ^{2}}\]

Now, let \(p=\left (p+a\right ) \) then from L29, the above becomes

\[\mathcal {L}\left (e^{-at}\ t\ \cos bt\right ) =\ \ \frac {\left (p+a\right ) ^{2}-b^{2}\ }{\left (\left (p+a\right ) ^{2}+b^{2}\right ) ^{2}}\]

3.12.7 chapter 15, problem 2.23

Problem use result obtained in problem 2.21 and 2.22 to find inverse transform for \(\frac {p^{2}+2p-1}{\left (p^{2}+4p+5\right ) ^{2}}\)

Solution

Recall, from 2.21 we showed that \(\mathcal {L}\left (te^{-at}\ \sin bt\right ) =\frac {2b\left (p+a\right ) \ }{\left ( \left (p+a\right ) ^{2}+b^{2}\right ) ^{2}}\) and from 2.22 \(\mathcal {L}\left (te^{-at}\ \cos bt\right ) =\frac {\left (p+a\right ) ^{2}-b^{2}\ }{\left (\left (p+a\right ) ^{2}+b^{2}\right ) ^{2}}\) Hence\begin {align*} \mathcal {L}\left (te^{-at}\ \cos bt\right ) -\mathcal {L}\left (te^{-at}\ \sin bt\right ) & =\frac {\left (p+a\right ) ^{2}-b^{2}\ }{\left (\left (p+a\right ) ^{2}+b^{2}\right ) ^{2}}-\frac {2b\left ( p+a\right ) \ }{\left (\left (p+a\right ) ^{2}+b^{2}\right ) ^{2}}\\ & =\frac {\left (p+a\right ) ^{2}+b^{2}\ -2b\left (p+a\right ) }{\left ( \left (p+a\right ) ^{2}+b^{2}\right ) ^{2}}\ \end {align*}

Now Let \(a=2\) and let \(b=1\) we get

\begin {align*} \mathcal {L}\left (te^{-2t}\ \cos t\right ) -\mathcal {L}\left (te^{-2t}\ \sin t\right ) & =\frac {\left (p+2\right ) ^{2}-1^{2}-2\left (p+2\right ) \ }{\left (\left (p+2\right ) ^{2}+1^{2}\right ) ^{2}}\\\mathcal {L}\left (te^{-2t}\ \cos t-te^{-2t}\ \sin t\right ) \ & =\ \frac {p^{2}+4+4p-1-2p-4\ }{\left (\left (p+2\right ) ^{2}+1^{2}\right ) ^{2}}\\ & =\frac {\ p^{2}+2p-1\ \ }{\left (p^{2}+4p+5\right ) ^{2}} \end {align*}

Hence inverse transform of \(\frac {\ p^{2}+2p-1\ \ }{\left (p^{2}+2p+5\right ) ^{2}}\) is \(te^{-2t}\ \cos t-te^{-2t}\ \sin t\) or \(\ te^{-2t}\ \left (\cos t-\sin t\right ) \)

3.12.8 chapter 15, problem 2.3

Problem Using either relation L2 or L3 and L4, verify L9 and L10 in laplace table.

Solution

\begin {equation} \mathcal {L}\left (e^{-at}\right ) =\frac {1}{p+a}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \operatorname {Re}\left ( p+a\right ) >0 \tag {L2} \end {equation}

\begin {equation} \mathcal {L}\sin at=\frac {a}{p^{2}+a^{2}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \operatorname {Re}\relax (p) >\left \vert \operatorname {Im}a\right \vert \ \tag {L3} \end {equation}

\begin {equation} \mathcal {L}\cos at=\frac {p}{p^{2}+a^{2}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \operatorname {Re}\relax (p) >\left \vert \operatorname {Im}a\right \vert \ \tag {L4} \end {equation}

\begin {equation} \mathcal {L}\sinh at=\frac {a}{p^{2}-a^{2}\ }\ \ \ \ \ \ \ \ \ \ \ \ \operatorname {Re}\relax (p) >\left \vert \ \operatorname {Re}\relax (a) \right \vert \ \ \tag {L9} \end {equation}

\begin {equation} \mathcal {L}\cosh at=\frac {p}{p^{2}-a^{2}\ }\ \ \ \ \ \ \ \ \ \ \ \ \operatorname {Re}\relax (p) >\left \vert \ \operatorname {Re}\relax (a) \right \vert \ \ \tag {L10} \end {equation}

Where \(\mathcal {L}\left (f\relax (t) \right ) \) is the laplace transform of \(f\left ( t\right ) \) defined as \(\mathcal {L}\left (f\relax (t) \right ) =Y\relax (s) =\int _{0}^{\infty }e^{-pt}f\relax (t) dt\). To derive L9, use the relation that

\[ i\sinh \relax (x) =\sin \left (ix\right ) \]

Hence, using L3, we get

\begin {align*} \mathcal {L}\left (i\sinh at\right ) & =\mathcal {L}\left (\sin iat\ \right ) \\ i\mathcal {L}\left (\sinh at\right ) & =\frac {ia}{p^{2}+\left (ia\right ) ^{2}}\ \ \ \ \ \ \ \ \ \ \ \ \ \operatorname {Re}\relax (p) >\left \vert \operatorname {Im}a\right \vert \\\mathcal {L}\left (\sinh at\right ) & =\ \frac {a}{p^{2}-a^{2}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \operatorname {Re}\relax (p) >\left \vert \ \operatorname {Re}\relax (a) \right \vert \ \ \ \ \ \ \ \ \ \ \end {align*}

which is L9. To find L10, use the relation

\[ \cosh \relax (x) =\cos \left (ix\right ) \]

And using L4, we get

\begin {align*} \mathcal {L}\left (\cosh \left (at\right ) \right ) & =\mathcal {L}\left (\cos \left (iat\right ) \ \right ) \\\mathcal {L}\left (\cosh at\right ) & =\frac {p}{p^{2}+\left (ia\right ) ^{2}}\ \ \ \ \ \ \ \ \ \ \ \ \ \operatorname {Re}\relax (p) >\left \vert \operatorname {Im}a\right \vert \\\mathcal {L}\left (\sinh at\right ) & =\ \frac {p}{p^{2}-a^{2}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \operatorname {Re}\relax (p) >\left \vert \ \operatorname {Re}\relax (a) \right \vert \ \ \ \ \ \ \end {align*}

Which is L10.

3.12.9 chapter 15, problem 2.4

Problem by differentiating the appropriate formulas w.r.t. ’a’, verify L12

Solution

L12 is

\begin {equation} \mathcal {L}\left (t\ \cos t\right ) =\frac {p^{2}-a^{2}}{\left (p^{2}+a^{2}\right ) ^{2}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \operatorname {Re}\left ( p\right ) >\left \vert \operatorname {Im}a\right \vert \ \tag {L12} \end {equation}

Where \(\mathcal {L}\left (f\relax (t) \right ) \) is the laplace transform of \(f\left ( t\right ) \) defined as\(\mathcal {L}\left (f\relax (t) \right ) =F\relax (p) =\int _{0}^{\infty }e^{-pt}f\relax (t) dt\). To derive this, I start with L3, which says

\[\mathcal {L}\left (\sin at\right ) =\frac {a}{p^{2}+a^{2}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \operatorname {Re}\relax (p) >\left \vert \operatorname {Im}a\right \vert \]

The above can be rewritten in the full definition of the transform to make it easier to see

\[ \int _{0}^{\infty }e^{-pt}\ \sin at\ \ dt=\frac {a}{p^{2}+a^{2}}\]

Taking derivative of both sides w.r.t. \(a\) gives

\begin {align*} \frac {d}{da}\left [ \int _{0}^{\infty }e^{-pt}\ \sin at\ \ dt\right ] & =\frac {d}{da}\left [ \frac {a}{p^{2}+a^{2}}\right ] \\ \int _{0}^{\infty }\frac {d}{da}\left [ e^{-pt}\ \sin at\right ] \ \ dt & =a\left (\frac {-2a}{\left (p^{2}+a^{2}\right ) ^{2}}\right ) +\frac {1}{p^{2}+a^{2}}\times 1\\ \int _{0}^{\infty }e^{-pt}\ t\cos at\ \ dt & =\frac {-2a^{2}}{\left ( p^{2}+a^{2}\right ) ^{2}}+\frac {1}{p^{2}+a^{2}}\\\mathcal {L}\left (t\ \cos at\right ) & =\frac {-2a^{2}+\left (p^{2}+a^{2}\right ) }{\left (p^{2}+a^{2}\right ) ^{2}}\ \\ \ & =\frac {p^{2}-a^{2}}{\left (p^{2}+a^{2}\right ) ^{2}}\ \end {align*}

Which is L12

3.12.10 chapter 15, problem 2.5

Problem by integrating the appropriate formulas w.r.t. ’a’, verify L19

Solution L19 is

\begin {equation} \mathcal {L}\left (\frac {\sin at}{t}\right ) =\arctan \frac {a}{p}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \operatorname {Re}\relax (p) >\left \vert \operatorname {Im}a\right \vert \ \tag {L19} \end {equation}

Where \(\mathcal {L}\left (f\relax (t) \right ) \) is the laplace transform of \(f\left ( t\right ) \) defined as \(\mathcal {L}\left (f\relax (t) \right ) =F\relax (p) =\int _{0}^{\infty }e^{-pt}f\relax (t) dt\). To derive this, we start with L4, which says

\[\mathcal {L}\left (\cos at\right ) =\frac {p}{p^{2}+a^{2}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \operatorname {Re}\relax (p) >\left \vert \operatorname {Im}a\right \vert \]

The above can be rewritten in the full definition of the transform to make it easier to see

\[ \int _{0}^{\infty }e^{-pt}\ \cos at\ \ dt=\frac {p}{p^{2}+a^{2}}\]

Integrating both sides w.r.t. \(a\) gives

\begin {align*} \int \left (\int _{t=0}^{t=\infty }e^{-pt}\ \cos at\ \ dt\right ) da & =\int \frac {p}{p^{2}+a^{2}}da\\ \int _{t=0}^{t=\infty }\left (\int e^{-pt}\ \cos at\ da\right ) \ dt & =\arctan \frac {a}{p}+K\\ \int _{t=0}^{t=\infty }e^{-pt}\ \left (\int \cos at\ da\right ) \ dt & =\arctan \frac {a}{p}+K\ \end {align*}

Now, since \(\int \cos at\ da=\frac {\sin at}{t}+k\) and choose zero for values of the K’s, the constants of integration gives

\[ \int _{0}^{\infty }e^{-pt}\ \left (\ \frac {\sin at}{t}\right ) \ dt=\arctan \frac {a}{p}\]

Hence

\[\mathcal {L}\left (\frac {\sin at}{t}\right ) =\arctan \frac {a}{p}\ \ \]

Which is L19

3.12.11 chapter 15, problem 2.9

Problem Find the inverse transform of the function \(F\left ( p\right ) =\frac {5-2p}{p^{2}+p-2}\)

Solution

Need to simplify the above expression to some expressions which are shown in the table on page 636.

\begin {align} F(p) & =\frac {5-2p}{p^{2}+p-2}\nonumber \\ & =\frac {5}{p^{2}+p-2}-\frac {2p}{p^{2}+p-2}\nonumber \\ & =\frac {5}{\ \left (p-1\right ) \left (p+2\right ) }-\frac {2p}{\left ( p-1\right ) \left (p+2\right ) } \tag {1} \end {align}

From table, L7, we see that \(\mathcal {L}\left (\frac {e^{-at}-e^{-bt}}{b-a}\right ) =F\relax (p) =\frac {1}{\ \left (p+a\right ) \left (p+b\right ) }\). Setting \(a=-1,b=2\) we get the first expression in (1), that is

\begin {equation} \mathcal {L}\left (\frac {e^{t}-e^{-2t}}{3}\right ) =\frac {1}{\ \left (p-1\right ) \left (p+2\right ) } \tag {2} \end {equation}

also from table, we see that L8 is \(\mathcal {L}\left (\frac {ae^{-at}-be^{-bt}}{a-b}\right ) =F\relax (p) =\frac {p}{\ \left (p+a\right ) \left (p+b\right ) }\). Hence, letting \(a=-1,b=2\) we get the second expression in (1), that is

\begin {equation} \mathcal {L}\left (\frac {-e^{+t}-2e^{-2t}}{-3}\right ) =\frac {p}{\ \left (p-1\right ) \left (p+2\right ) } \tag {3} \end {equation}

So combine (2) and (3) we get

\[ 5\mathcal {L}\left (\frac {e^{+t}-e^{-2t}}{2+1}\right ) -2\mathcal {L}\left (\frac {-e^{+t}-2e^{-2t}}{-1-2}\right ) =\frac {5}{\ \left (p-1\right ) \left (p+2\right ) }-\frac {2p}{\left (p-1\right ) \left (p+2\right ) }\]

which is (1). Hence

\begin {align*} f\relax (t) & =5\frac {e^{+t}-e^{-2t}}{3}-2\frac {-e^{+t}-2e^{-2t}}{-3}\\ & =5\frac {e^{+t}-e^{-2t}}{3}+2\frac {-e^{+t}-2e^{-2t}}{3}\\ & =\frac {5e^{+t}-5e^{-2t}-2e^{+t}-4e^{-2t}}{3}\ \\ & =\frac {3e^{t}-9e^{-2t}}{3}\\ & =e^{t}-3e^{-2t} \end {align*}

Hence the inverse transform of \(F(p)\) is \(e^{t}-3e^{-2t}\)

3.12.12 chapter 15, problem 3.11

Problem Use laplace transform to solve \(y^{\prime \prime }\ -4y=4e^{2t}\) ,\(y_{0}=0,y_{0}^{\prime }=1\)

Solution

Let \(\mathcal {L}\left (y\relax (t) \right ) =Y\relax (p) \), and taking the laplace transform of both sides, noting first that \(\mathcal {L}\left (y^{\prime \prime }\right ) =p^{2}Y-py_{0}-y_{0}^{\prime }\) then we get

\begin {align*} \mathcal {L}\left (y^{\prime \prime }\right ) \ -4\mathcal {L}\left (y\relax (t) \right ) & =\mathcal {L}\left (4e^{2t}\right ) \\ \left (p^{2}Y-py_{0}-y_{0}^{\prime }\right ) \ -4Y & =4\mathcal {L}\left (e^{2t}\right ) \end {align*}

L2 from table on page 636 : \(\mathcal {L}\left (e^{-at}\right ) =\frac {1}{p+a}\ \), hence \(\mathcal {L}\left (e^{2t}\right ) =\frac {1}{p-2}\), hence, after applying boundary conditions, we get

\begin {align*} \left (p^{2}Y\ -1\right ) \ -4Y & =4\frac {1}{p-2}\\ \ Y\left (p^{2}-4\right ) -1 & =4\frac {1}{p-2}\\ Y & =4\frac {1}{\left (p^{2}-4\right ) \left (p-2\right ) }+\frac {1}{\left (p^{2}-4\right ) }\\ Y & =\ 4\frac {1}{\left (p-2\right ) \left (p+2\right ) \left (p-2\right ) }+\frac {1}{\left (p^{2}-4\right ) }\\ Y & =\ 4\frac {1}{\ \left (p+2\right ) \left (p-2\right ) ^{2}}+\frac {1}{\left (p^{2}-4\right ) } \end {align*}

Doing partial fractions, repeated roots, gives

\begin {align*} \frac {1}{\ \left (p+2\right ) \left (p-2\right ) ^{2}} & =\frac {A}{\left ( p+2\right ) \ }+\frac {B}{\left (p-2\right ) \ }+\ \frac {C}{\left ( p-2\right ) ^{2}\ }\\ 1 & =A\left (p-2\right ) ^{2}+B\left (p+2\right ) \left (p-2\right ) +C\left (p+2\right ) \\ 1 & =A\left (p^{2}-4p+4\right ) +B\left (p^{2}-4\right ) +C\left ( p+2\right ) \\ 1 & =p^{2}\left (A+B\right ) +p\left (-4A+C\right ) +4A-4B+2C \end {align*}

Hence

\begin {align*} \ A+B & =0\\ -4A+C & =0\\ 4A-4B+2C & =1 \end {align*}

hence \(A=-B\), then \(-4B-4B+2C=1\) or \(-8B+2C=1\) or \(C=\frac {1+8B}{2}\), therefore \(4B+\frac {1+8B}{2}=0\) then \(B=-\frac {1}{16}\), then \(A=\frac {1}{16},C=\frac {1+8\left (-\frac {1}{16}\right ) }{2}=\frac {1-\ \left (\frac {1}{2}\right ) }{2}=\frac {1}{4}\). Hence

\begin {align*} Y & =4\frac {1}{\ \left (p+2\right ) \left (p-2\right ) ^{2}}+\frac {1}{\left (p^{2}-4\right ) }\\ & =4\left (\frac {A}{\left (p+2\right ) \ }+\frac {B}{\left (p-2\right ) \ }+\ \frac {C}{\left (p-2\right ) ^{2}\ }\right ) \ +\frac {1}{\left ( p^{2}-4\right ) }\\ & =4\left (\frac {\frac {1}{16}}{\left (p+2\right ) \ }+\frac {-\frac {1}{16}}{\left (p-2\right ) \ }+\ \frac {\frac {1}{4}}{\left (p-2\right ) ^{2}\ }\right ) \ +\frac {1}{\left (p^{2}-4\right ) }\\ & =\frac {1}{4}\frac {\ 1}{\left (p+2\right ) \ }-\frac {1}{4}\frac {1}{\left ( p-2\right ) \ }\ +\frac {1}{\left (p-2\right ) ^{2}}+\frac {1}{\left ( p^{2}-4\right ) }\\ & =\frac {1}{4}\frac {\ 1}{\left (p+2\right ) \ }-\frac {1}{4}\frac {1}{\left ( p-2\right ) \ }\ +\frac {1}{\left (p-2\right ) ^{2}}+\ \left (\frac {1}{4}\frac {\ 1}{\left (p-2\right ) \ }-\frac {1}{4}\frac {1}{\left (p+2\right ) \ }\right ) \\ & =\ \frac {1}{\left (p-2\right ) ^{2}} \end {align*}

\(\frac {1}{\left (p-2\right ) ^{2}}\rightarrow \) using L6, we have \(\mathcal {L}\left (\ t^{k}e^{-at}\right ) =\frac {k!}{\left (p+a\right ) ^{k+1}}\), here \(a=-2,k=1\) and \(\frac {1}{\left (p-2\right ) ^{2}}\rightarrow te^{2t}\). Hence ,

\[ f\relax (t) =te^{2t}\]

3.12.13 chapter 15, problem 3.24

Problem Use laplace transform to solve \(y^{\prime \prime }\ -2y^{\prime }+y=2\cos t\) ,\(y_{0}=5,y_{0}^{\prime }=-2\)

Solution

Let \(\mathcal {L}\left (y\relax (t) \right ) =Y\relax (p) \), Take the laplace transform of both sides, noting first that \(\mathcal {L}\left (y^{\prime \prime }\right ) =p^{2}Y-py_{0}-y_{0}^{\prime }\) , \(\mathcal {L}\left (y^{\prime }\right ) =pY-y_{0}\)then we get

\begin {align*} \mathcal {L}\left (y^{\prime \prime }\right ) \ -2\mathcal {L}\left (y^{\prime }\right ) +\mathcal {L}\left (y\relax (t) \right ) & =\mathcal {L}\left (2\cos t\right ) \\ \left (p^{2}Y-py_{0}-y_{0}^{\prime }\right ) \ -2\left (pY-y_{0}\right ) +Y & =2\frac {p}{p^{2}+1} \end {align*}

\begin {align*} \left (p^{2}Y-5p+2\right ) \ -2\left (pY-5\right ) +Y & =2\frac {p}{p^{2}+1}\\ Y\left (p^{2}-2p+1\right ) +12-5p & =2\frac {p}{p^{2}+1}\\ Y\left (p^{2}-2p+1\right ) & =\frac {2p}{p^{2}+1}-12+5p\\ Y & =\frac {\frac {2p}{p^{2}+1}-12+5p}{\left (p^{2}-2p+1\right ) }\\ Y & =\ \ \frac {2p}{\left (p^{2}+1\right ) \left (p^{2}-2p+1\right ) }+\frac {5p-12}{\left (p^{2}-2p+1\right ) }\\ Y & =\ \frac {2p}{\left (p^{2}+1\right ) \left (p-1\right ) ^{2}}+\frac {5p-12}{\left (p-1\right ) ^{2}} \end {align*}

Doing partial fractions \(\frac {2p}{\left (p-1\right ) ^{2}\left ( p^{2}+1\right ) }=\frac {A}{\left (p-1\right ) }+\frac {B}{\left (p-1\right ) ^{2}\ }+\ \frac {Cp+D}{\left (p^{2}+1\right ) \ }\). Solving, we get \(A=0,B=1,C=0,D=-1\) Hence

\begin {align*} Y & =\ \frac {1}{\left (p-1\right ) ^{2}\ }-\ \frac {\ 1}{\left ( p^{2}+1\right ) \ }+\frac {5p-12}{\left (p-1\right ) ^{2}}\\ & =\ \frac {1}{\left (p-1\right ) ^{2}\ }-\ \frac {\ 1}{\left (p^{2}+1\right ) \ }+\frac {5p\ }{\left (p-1\right ) ^{2}}-12\frac {\ 1\ }{\left ( p-1\right ) ^{2}}\\ & =\frac {-11}{\left (p-1\right ) ^{2}\ }-\ \frac {\ 1}{\left (p^{2}+1\right ) \ }+\frac {5p\ }{\left (p-1\right ) ^{2}} \end {align*}

Hence , using table, we get inverse laplace transform \(\frac {1}{\left ( p-1\right ) ^{2}\ }\rightarrow te^{t}\) and \(\ \frac {\ 1}{\left ( p^{2}+1\right ) \ }\rightarrow \sin t\) and \(\frac {p\ }{\left (p-1\right ) ^{2}}\rightarrow e^{t}+te^{t}\), hence

\begin {align*} f\relax (t) & =-11te^{t}-\sin t+5\left (e^{t}+te^{t}\right ) \\ & =-11te^{t}-\sin t+5e^{t}+5te^{t}\\ & =5e^{t}-6te^{t}-\sin t \end {align*}

3.12.14 chapter 15, problem 3.25

Problem Use laplace transform to solve \(y^{\prime \prime }\ +4y^{\prime }+5y=2e^{-2t}\cos t,\) ,\(y_{0}=0,y_{0}^{\prime }=3\)

Solution

Let \(\mathcal {L}\left (y\relax (t) \right ) =Y\relax (p) \), Taking the laplace transform of both sides, noting first that \(\mathcal {L}\left (y^{\prime \prime }\relax (t) \right ) =p^{2}Y-py_{0}-y_{0}^{\prime }\) , \(\mathcal {L}\left (y^{\prime }\relax (t) \right ) =pY-y_{0}\)then we get

\begin {align*} \mathcal {L}\left (y^{\prime \prime }\relax (t) \right ) +4\mathcal {L}\left (y^{\prime }\relax (t) \right ) +5\mathcal {L}\left (y\relax (t) \right ) & =\mathcal {L}\left (2e^{-2t}\cos t\right ) \\ \left (p^{2}Y-py_{0}-y_{0}^{\prime }\right ) \ +4\left (pY-y_{0}\right ) +5Y & =2\mathcal {L}\left (e^{-2t}\cos t\right ) \end {align*}

Applying initial conditions

\[ \left (p^{2}Y\ -3\right ) \ +4\left (pY\right ) +5Y=2\mathcal {L}\left (e^{-2t}\cos t\right ) \]

From table using L14 \(\mathcal {L}\left (e^{-2t}\cos t\right ) =\frac {p+2}{\left (p+2\right ) ^{2}+1}\). Hence

\begin {align*} \left (p^{2}Y\ -3\right ) \ +4\left (pY\right ) +5Y & =2\frac {p+2}{\left ( p+2\right ) ^{2}+1}\\ Y\left (p^{2}+4p+5\right ) -3 & =2\frac {p+2}{\left (p+2\right ) ^{2}+1}\\ Y & =\frac {2\frac {p+2}{\left (p+2\right ) ^{2}+1}+3}{\left (p^{2}+4p+5\right ) }\\ Y & =2\frac {p+2}{\left (\left (p+2\right ) ^{2}+1\right ) \left ( p^{2}+4p+5\right ) }+3\frac {1}{\left (p^{2}+4p+5\right ) } \end {align*}

but \(\left (p^{2}+4p+5\right ) =\left (p+2\right ) ^{2}+1\), therefore

\begin {align*} Y & =2\frac {p+2}{\left (\left (p+2\right ) ^{2}+1\right ) ^{2}\ }+\frac {3}{\left (p+2\right ) ^{2}+1}\\ & =2\frac {p+2}{\left (\left (p+2\right ) ^{2}+1\right ) \left (\left ( p+2\right ) ^{2}+1\right ) }+\frac {3}{\left (p+2\right ) ^{2}+1} \end {align*}

But inverse transform of \(\frac {p+2}{\left (\left (p+2\right ) ^{2}+1\right ) ^{2}\ }=\frac {1}{2}te^{-2t}\sin t\) and inverse transform of \(\frac {1}{\left (p+2\right ) ^{2}+1}=e^{-2t}\sin t\). Hence

\begin {align*} f\relax (t) & =2\left (\frac {1}{2}te^{-2t}\sin t\right ) +3\left ( e^{-2t}\sin t\right ) \\ & =te^{-2t}\sin t+3e^{-2t}\sin t\\ & =\left (t+3\right ) e^{-2t}\ \sin t \end {align*}

3.12.15 chapter 15, problem 3.29

Problem Use laplace transform to solve \(y^{\prime }\ +z^{\prime }-2y=1,\) \(y_{0}=z_{0}=1,z-y^{\prime }=t\ \)

Solution

Taking laplace transform of both equations, then we get 2 equations in \(Y\) and \(Z\), then solve for them. Let \(\mathcal {L}\left (y\relax (t) \right ) =Y\relax (p) \), \(\mathcal {L}\left (z\relax (t) \right ) =Z\relax (p) \)

\begin {align*} \mathcal {L}\left (y^{\prime }\relax (t) \right ) \ +\mathcal {L}\left (z^{\prime }\relax (t) \right ) -2\mathcal {L}\left (y\relax (t) \right ) & =\mathcal {L}\relax (1) \\\mathcal {L}\left (z\relax (t) \right ) \ -\mathcal {L}\left (y^{\prime }\relax (t) \right ) & =\mathcal {L}\relax (t) \end {align*}

Then we get

\begin {align*} \left (pY-y_{0}\ \right ) +\left (pZ-z_{0}\ \right ) -2Y & =\frac {1}{p}\\ \ Z\ -\left (pY-y_{0}\ \right ) \ & =\ \frac {1}{p^{2}} \end {align*}

Putting initial conditions gives

\begin {align*} \left (pY-1\ \right ) +\left (pZ-1\ \right ) -2Y & =\frac {1}{p}\\ \ Z\ -\left (pY-1\ \right ) \ & =\ \frac {1}{p^{2}} \end {align*}

\begin {align} \ Y\left (p-2\right ) +\ pZ-2\ \ \ & =\frac {1}{p}\tag {1}\\ \ Z\ -pY+1\ \ & =\ \frac {1}{p^{2}} \tag {2} \end {align}

Solving for \(Y,\)From (1), \(Z=\frac {\frac {1}{p}+2-Y\left (p-2\right ) }{p}\) , and substituting into (2) gives

\begin {align*} \ \frac {\frac {1}{p}+2-Y\left (p-2\right ) }{p}-pY+1\ & =\ \frac {1}{p^{2}}\\ \frac {1}{p}+2-Y\left (p-2\right ) -p^{2}Y+p & =\frac {1}{p}\\ \ \ 2-Y\left (p-2\right ) -p^{2}Y\ & =-p\\ \ Y\left (-p+2-p^{2}\right ) \ & =\ -p-2\\ Y\ & =\ \ \frac {-p-2}{\left (-p+2-p^{2}\right ) }\\ Y\ & =\ \ -\ \frac {p+2}{\left (-p+1\right ) \left (p+2\right ) }\\ Y & =-\ \frac {1}{\left (-p+1\right ) } \end {align*}

Hence \(Y=\frac {1}{p-1}\) so from L2

\[ y\relax (t) =e^{t}\]

Now, that we have \(Y,\) we solve for \(Z.\) From (2)

\begin {align*} \ Z\ -pY+1\ \ & =\ \frac {1}{p^{2}}\\ Z-p\left (\frac {1}{p-1}\right ) +1 & =\frac {1}{p^{2}}\\ Z & =\frac {1}{p^{2}}-1+\frac {p}{p-1}\\ Z & =\ \frac {p-1-p^{2}\left (p-1\right ) +p^{3}}{p^{2}\left (p-1\right ) }\\ Z & =\frac {p-1\ +p^{2}\ }{p^{2}\left (p-1\right ) }\\ Z & =\frac {p-1\ +p^{2}\ }{p^{2}\left (p-1\right ) } \end {align*}

Doing partial fraction on the above, we get \(Z=\ \frac {1}{p^{2}}+\frac {1}{p-1}\), Hence

\[ z\relax (t) =t+e^{t}\]

3.12.16 chapter 15, problem 3.30

Problem Use laplace transform to solve \(y^{\prime }\ +2z=1,\) \(y_{0}=0,\ 2y-z^{\prime }=2t,z_{0}=1\ \)

Solution

Take laplace transform of both equations, then we get 2 equations in \(Y\) and \(Z\), then solve for them.

Let \(\mathcal {L}\left (y\relax (t) \right ) =Y\relax (p) \), \(\mathcal {L}\left (z\relax (t) \right ) =Z\relax (p) \)

\begin {align*} \mathcal {L}\left (y^{\prime }\relax (t) \right ) +2Z & =\mathcal {L}\relax (1) \ \\ \ 2Y\ -\mathcal {L}\left (z^{\prime }\relax (t) \right ) & =\mathcal {L}\left (2t\right ) \end {align*}

\begin {align*} pY-y_{0}\ +2Z & =\mathcal {L}\relax (1) \ \\ \ 2Y\ -\left (pZ-z_{0}\right ) \ & =\mathcal {L}\left (2t\right ) \end {align*}

Then we get, by putting \(z_{0}=1,y_{0}=0\)

\begin {align} pY\ \ +2Z & =\frac {1}{p}\tag {1}\\ \ 2Y\ -\left (pZ-1\ \right ) \ & =\frac {2}{p^{2}} \tag {2} \end {align}

Obtain Z from first equation and sub into the second to solve for \(Y\), \(Z=\frac {\frac {1}{p}-pY}{2}\), Hence

\begin {align*} \ 2Y\ -\left (p\left (\frac {\frac {1}{p}-pY}{2}\right ) -1\ \right ) \ & =\frac {2}{p^{2}}\\ 2Y-\frac {p}{2}\left (\frac {1}{p}-pY\right ) +1 & =\ \frac {2}{p^{2}}\\ 2Y\ -\frac {p}{2}\left (\frac {1-p^{2}Y}{p}\right ) & =\ \ \frac {2}{p^{2}}-1\\ 2Y\ -\frac {1}{2}\left (1-p^{2}Y\right ) & =\ \frac {2-p^{2}}{p^{2}}\\ 2Y\ -\frac {1}{2}\ +\frac {1}{2}p^{2}Y & =\frac {2-p^{2}}{p^{2}}\\ Y\left (2+\frac {p^{2}}{2}\right ) & =\frac {2-p^{2}}{p^{2}}+\frac {1}{2}\\ Y & =\ \frac {\frac {4-p^{2}}{2p^{2}}}{\left (\ \frac {4+p^{2}}{2}\right ) }\\ Y & =\frac {\ 4-p^{2}}{\ p^{2}\left (\ 4+p^{2}\right ) } \end {align*}

Hence , using partial fraction gives

\begin {align*} Y & =\frac {\ 4+p^{2}}{\ p^{2}\left (\ 4+p^{2}\right ) }\\ & =\frac {Ap+B}{p^{2}}+\frac {Cp+D}{\left (\ 4+p^{2}\right ) } \end {align*}

Then

\(\ \)\begin {align*} \left (Ap+B\right ) \left (\ 4+p^{2}\right ) +\left (Cp+D\right ) p^{2} & =4-p^{2}\\ 4Ap+Ap^{3}+4B+Bp^{2}+Cp^{3}+Dp^{2} & =4-p^{2}\\ p^{3}\left (A+C\right ) +p^{2}\left (B+D\right ) +p\left (4A\right ) +4B & =4-p^{2} \end {align*}

Hence, \(4B=4\rightarrow B=1\ \) and \(4A=0\rightarrow A=0\ \) and \(B+D=-1\) and \(A+C=0\rightarrow C=0\ \), therefore \(D=-1-B\rightarrow D=-2\ \). Hence

\begin {align*} Y & =\frac {Ap+B}{p^{2}}+\frac {Cp+D}{\left (\ 4+p^{2}\right ) }\\ & =\frac {1}{p^{2}}-\frac {2}{\left (\ 4+p^{2}\right ) } \end {align*}

Using tables for inverse transform gives

\[ y\relax (t) =t-\sin 2t \]

Now, to find \(z\relax (t) \), subtituting value we found for Y into equation (1) above.

\begin {align*} pY\ \ +2Z & =\frac {1}{p}\\ p\left (\frac {1}{p^{2}}-\frac {2}{\left (\ 4+p^{2}\right ) }\right ) \ \ +2Z & =\frac {1}{p}\\ \frac {1}{p}-\frac {2p}{\left (\ 4+p^{2}\right ) }\ \ +2Z & =\frac {1}{p}\\ \ \ Z & =\frac {p}{\left (\ 4+p^{2}\right ) }\\ Z & =\frac {p}{\left (\ 4+p^{2}\right ) } \end {align*}

From tables, using L4

\[ z\relax (t) =\cos 2t \]

3.12.17 chapter 15, problem 3.4

Problem Use laplace transform to solve \(y^{\prime \prime }+y=\sin t\) ,\(y_{0}=1,y_{0}^{\prime }=0\)

Solution

Let \(\mathcal {L}\left (y\relax (t) \right ) =Y\relax (p) \), Take the laplace transform of both sides, noting first that \(\mathcal {L}\left (y^{\prime \prime }\relax (t) \right ) =p^{2}Y-py_{0}-y_{0}^{\prime }\) then we get

\begin {align*} \mathcal {L}\left (y^{\prime \prime }\relax (t) \right ) +\mathcal {L}\left (y\relax (t) \right ) & =\mathcal {L}\left (\sin t\right ) \\ \left (p^{2}Y-py_{0}-y_{0}^{\prime }\right ) +Y\ & =\frac {1}{p^{2}+1} \end {align*}

Where I used L3 from table on page 636 which says that \(\mathcal {L}\left (\sin at\right ) =\frac {a}{p^{2}+a^{2}}\). Now solving for \(Y,\) noting that \(y_{0}=1\) and \(y_{0}^{\prime }=0\) gives

\begin {align} \left (p^{2}Y-p\right ) +Y\ & =\frac {1}{p^{2}+1}\nonumber \\ Y\left (p^{2}+1\right ) \ -p & =\frac {1}{p^{2}+1}\nonumber \\ Y\left (p^{2}+1\right ) \ \ & =\frac {1}{p^{2}+1}+p\ \nonumber \\ Y\ & =\ \frac {1}{\left (p^{2}+1\right ) ^{2}}+\ \frac {p}{\left ( p^{2}+1\right ) } \tag {1} \end {align}

From table using L12, \(\frac {p}{\left (p^{2}+1\right ) }\rightarrow \cos t\) and using L17, \(\frac {1}{\left (p^{2}+1\right ) ^{2}}\rightarrow \frac {1}{2}\left (\sin t-t\cos t\right ) \). Hence, putting these together into (1) gives

\[ f\relax (t) =\cos t+\frac {1}{2}\left (\sin t-t\cos t\right ) \]

This is the particular solution to the ODE.

3.12.18 chapter 15, problem 3.6

Problem Use laplace transform to solve \(y^{\prime \prime }-6y^{\prime }+9y=te^{3t}\) ,\(y_{0}=0,y_{0}^{\prime }=5\)

Solution

Let \(\mathcal {L}\left (y\relax (t) \right ) =Y\relax (p) \), Take the laplace transform of both sides, noting first that \(\mathcal {L}\left (y^{\prime \prime }\relax (t) \right ) =p^{2}Y-py_{0}-y_{0}^{\prime }\) and \(\mathcal {L}\left (y^{\prime }\relax (t) \right ) =pY-y_{0}\) then we get

\begin {align*} \mathcal {L}\left (y^{\prime \prime }\relax (t) \right ) -6\mathcal {L}\left (y^{\prime }\relax (t) \right ) +9\mathcal {L}\left (y\relax (t) \right ) & =\mathcal {L}\left (t\ e^{3t}\right ) \\ \left (p^{2}Y-py_{0}-y_{0}^{\prime }\right ) -6\left (pY-y_{0}\right ) +9Y & =\mathcal {L}\left (t\ e^{3t}\right ) \end {align*}

I use L6 from table on page 636 which says that \(\mathcal {L}\left (t^{k}\ e^{-at}\right ) =\frac {k!}{\left (p+a\right ) ^{k+1}},\) hence for \(k=1,a=-3\), we get \(\mathcal {L}\left (t^{k}\ e^{-at}\right ) =\frac {1}{\left (p-3\right ) ^{2}}\)

\[ \left (p^{2}Y-py_{0}-y_{0}^{\prime }\right ) -6\left (pY-y_{0}\right ) +9Y=\frac {1}{\left (p-3\right ) ^{2}}\]

Applying boundary conditions gives

\begin {align} \left (p^{2}Y-5\right ) -6\left (pY\right ) +9Y & =\frac {1}{\left ( p-3\right ) ^{2}}\nonumber \\ Y\left (p^{2}-6p+9\right ) -5 & =\frac {1}{\left (p-3\right ) ^{2}}\nonumber \\ Y\left (p^{2}-6p+9\right ) \ & =\frac {1}{\left (p-3\right ) ^{2}}+5\nonumber \\ Y & =\frac {1}{\left (p^{2}-6p+9\right ) \left (p-3\right ) ^{2}}+\frac {5}{\left (p^{2}-6p+9\right ) }\nonumber \\ Y & =\frac {1}{\ \left (p-3\right ) ^{2}\left (p-3\right ) ^{2}}+\frac {5}{\left (p-3\right ) ^{2}}\nonumber \\ Y & =\frac {1}{\ \left (p-3\right ) ^{4}\ }+\frac {5}{\left (p-3\right ) ^{2}} \tag {1} \end {align}

Now using table, from L6, \(\frac {1}{\left (p-3\right ) ^{2}},\) let \(a=-3,k=1\) hence \(\frac {1}{\left (p-3\right ) ^{2}}\rightarrow te^{3t}\) And using L6 again, \(\frac {1}{\ \left (p-3\right ) ^{4}\ },\) let \(k=3,a=-3\) then \(\frac {6}{\ \left (p-3\right ) ^{4}\ }\rightarrow t^{3}e^{3t}\), therefore (1) becomes

\begin {align*} f\relax (t) & =\frac {1}{6}t^{3}e^{3t}+5\ te^{3t}\\ & =e^{3t}\left (\frac {1}{6}t^{3}+5t\right ) \end {align*}

3.12.19 chapter 15, problem 3.8

Problem Use laplace transform to solve \(y^{\prime \prime }\ +16y=8\cos 4t\) ,\(y_{0}=0,y_{0}^{\prime }=0\)

Solution

Let \(\mathcal {L}\left (y\relax (t) \right ) =Y\relax (p) \), Taking the laplace transform of both sides, noting first that \(\mathcal {L}\left (y^{\prime \prime }\relax (t) \right ) =p^{2}Y-py_{0}-y_{0}^{\prime }\) results in

\begin {align*} \mathcal {L}\left (y^{\prime \prime }\relax (t) \right ) \ +16\mathcal {L}\left (y\relax (t) \right ) & =\mathcal {L}\left (8\cos 4t\right ) \\ \left (p^{2}Y-py_{0}-y_{0}^{\prime }\right ) \ +16Y & =8\mathcal {L}\left (\cos 4t\right ) \\ Y\left (p^{2}+16\right ) & =8\frac {p}{p^{2}+16} \end {align*}

I used L6 from table on page 636 : \(\mathcal {L}\left (\cos at\right ) =\frac {p}{p^{2}+a^{2}}\ \)

\[ Y=8\frac {p}{\left (p^{2}+16\right ) ^{2}}\]

Now looking at L11, which says \(\mathcal {L}\left (t\ \sin at\right ) =\frac {2ap}{\left (p^{2}+a^{2}\right ) ^{2}}\), hence letting \(a=4\,\ \) gives the solution

\[ \ f\relax (t) =t\ \sin 4t\ \]