3.17.10 ee2+ee210x2240x3+160x4+e3x(80x3+220x4120x5)+e6x(20x350x4+30x5)+eee220x2(ee2(6+e3x(1+x)4x)+40x3+e3x(20x330x4))5x3dx

Optimal. Leaf size=31 (2+eee220x2+(4e3x)(1+x))2

________________________________________________________________________________________

Rubi [F]  time = 3.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} ee2+ee210x2240x3+160x4+e3x(80x3+220x4120x5)+e6x(20x350x4+30x5)+eee220x2(ee2(6+e3x(1+x)4x)+40x3+e3x(20x330x4))5x3dx

Verification is not applicable to the result.

[In]

Int[(-E^(E^2 + E^E^2/(10*x^2)) - 240*x^3 + 160*x^4 + E^(3*x)*(-80*x^3 + 220*x^4 - 120*x^5) + E^(6*x)*(20*x^3 -
 50*x^4 + 30*x^5) + E^(E^E^2/(20*x^2))*(E^E^2*(6 + E^(3*x)*(-1 + x) - 4*x) + 40*x^3 + E^(3*x)*(20*x^3 - 30*x^4
)))/(5*x^3),x]

[Out]

-12*E^(3*x) + E^(6*x) + (6 - E^(E^E^2/(20*x^2)) - 4*x)^2 + 20*E^(3*x)*x - 2*E^(6*x)*x - 8*E^(3*x)*x^2 + E^(6*x
)*x^2 + 4*Defer[Int][E^((E^E^2 + 60*x^3)/(20*x^2)), x] - Defer[Int][E^(E^2 + (E^E^2 + 60*x^3)/(20*x^2))/x^3, x
]/5 + Defer[Int][E^(E^2 + (E^E^2 + 60*x^3)/(20*x^2))/x^2, x]/5 - 6*Defer[Int][E^((E^E^2 + 60*x^3)/(20*x^2))*x,
 x]

Rubi steps

integral=15ee2+ee210x2240x3+160x4+e3x(80x3+220x4120x5)+e6x(20x350x4+30x5)+eee220x2(ee2(6+e3x(1+x)4x)+40x3+e3x(20x330x4))x3dx=15(10e6x(1+x)(2+3x)+(6+eee220x2+4x)(ee2+ee220x2+40x3)x3e3x(ee2+ee220x2ee2+ee220x2x+80x320eee220x2x3220x4+30eee220x2x4+120x5)x3)dx=15(6+eee220x2+4x)(ee2+ee220x2+40x3)x3dx15e3x(ee2+ee220x2ee2+ee220x2x+80x320eee220x2x3220x4+30eee220x2x4+120x5)x3dx+2e6x(1+x)(2+3x)dx=(6eee220x24x)215e3x(ee2+ee220x2(1+x)+10eee220x2x3(2+3x)+20x3(411x+6x2))x3dx+2(2e6x5e6xx+3e6xx2)dx=(6eee220x24x)215(20e3x(1+2x)(4+3x)+eee220x2+3x(ee2ee2x20x3+30x4)x3)dx+4e6xdx+6e6xx2dx10e6xxdx=2e6x3+(6eee220x24x)253e6xx+e6xx215eee220x2+3x(ee2ee2x20x3+30x4)x3dx+53e6xdx2e6xxdx4e3x(1+2x)(4+3x)dx=17e6x18+(6eee220x24x)22e6xx+e6xx215eee2+60x320x2(ee2ee2x20x3+30x4)x3dx+13e6xdx4(4e3x11e3xx+6e3xx2)dx=e6x+(6eee220x24x)22e6xx+e6xx215(20eee2+60x320x2+ee2+ee2+60x320x2x3ee2+ee2+60x320x2x2+30eee2+60x320x2x)dx16e3xdx24e3xx2dx+44e3xxdx=16e3x3+e6x+(6eee220x24x)2+443e3xx2e6xx8e3xx2+e6xx215ee2+ee2+60x320x2x3dx+15ee2+ee2+60x320x2x2dx+4eee2+60x320x2dx6eee2+60x320x2xdx443e3xdx+16e3xxdx=92e3x9+e6x+(6eee220x24x)2+20e3xx2e6xx8e3xx2+e6xx215ee2+ee2+60x320x2x3dx+15ee2+ee2+60x320x2x2dx+4eee2+60x320x2dx163e3xdx6eee2+60x320x2xdx=12e3x+e6x+(6eee220x24x)2+20e3xx2e6xx8e3xx2+e6xx215ee2+ee2+60x320x2x3dx+15ee2+ee2+60x320x2x2dx+4eee2+60x320x2dx6eee2+60x320x2xdx

________________________________________________________________________________________

Mathematica [B]  time = 1.76, size = 91, normalized size = 2.94 15(5eee210x2eee220x2(6040x)+5e6x(1+x)2240x+80x210e3x(1+x)(6+eee220x2+4x))

Antiderivative was successfully verified.

[In]

Integrate[(-E^(E^2 + E^E^2/(10*x^2)) - 240*x^3 + 160*x^4 + E^(3*x)*(-80*x^3 + 220*x^4 - 120*x^5) + E^(6*x)*(20
*x^3 - 50*x^4 + 30*x^5) + E^(E^E^2/(20*x^2))*(E^E^2*(6 + E^(3*x)*(-1 + x) - 4*x) + 40*x^3 + E^(3*x)*(20*x^3 -
30*x^4)))/(5*x^3),x]

[Out]

(5*E^(E^E^2/(10*x^2)) - E^(E^E^2/(20*x^2))*(60 - 40*x) + 5*E^(6*x)*(-1 + x)^2 - 240*x + 80*x^2 - 10*E^(3*x)*(-
1 + x)*(-6 + E^(E^E^2/(20*x^2)) + 4*x))/5

________________________________________________________________________________________

fricas [B]  time = 0.74, size = 71, normalized size = 2.29 16x2+(x22x+1)e(6x)4(2x25x+3)e(3x)2((x1)e(3x)4x+6)e(e(e2)20x2)48x+e(e(e2)10x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*(-exp(exp(2))*exp(1/20*exp(exp(2))/x^2)^2+(((x-1)*exp(3*x)+6-4*x)*exp(exp(2))+(-30*x^4+20*x^3)*e
xp(3*x)+40*x^3)*exp(1/20*exp(exp(2))/x^2)+(30*x^5-50*x^4+20*x^3)*exp(3*x)^2+(-120*x^5+220*x^4-80*x^3)*exp(3*x)
+160*x^4-240*x^3)/x^3,x, algorithm="fricas")

[Out]

16*x^2 + (x^2 - 2*x + 1)*e^(6*x) - 4*(2*x^2 - 5*x + 3)*e^(3*x) - 2*((x - 1)*e^(3*x) - 4*x + 6)*e^(1/20*e^(e^2)
/x^2) - 48*x + e^(1/10*e^(e^2)/x^2)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 160x4240x3+10(3x55x4+2x3)e(6x)20(6x511x4+4x3)e(3x)+(40x310(3x42x3)e(3x)+((x1)e(3x)4x+6)e(e2))e(e(e2)20x2)e(e(e2)10x2+e2)5x3dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*(-exp(exp(2))*exp(1/20*exp(exp(2))/x^2)^2+(((x-1)*exp(3*x)+6-4*x)*exp(exp(2))+(-30*x^4+20*x^3)*e
xp(3*x)+40*x^3)*exp(1/20*exp(exp(2))/x^2)+(30*x^5-50*x^4+20*x^3)*exp(3*x)^2+(-120*x^5+220*x^4-80*x^3)*exp(3*x)
+160*x^4-240*x^3)/x^3,x, algorithm="giac")

[Out]

integrate(1/5*(160*x^4 - 240*x^3 + 10*(3*x^5 - 5*x^4 + 2*x^3)*e^(6*x) - 20*(6*x^5 - 11*x^4 + 4*x^3)*e^(3*x) +
(40*x^3 - 10*(3*x^4 - 2*x^3)*e^(3*x) + ((x - 1)*e^(3*x) - 4*x + 6)*e^(e^2))*e^(1/20*e^(e^2)/x^2) - e^(1/10*e^(
e^2)/x^2 + e^2))/x^3, x)

________________________________________________________________________________________

maple [B]  time = 0.14, size = 80, normalized size = 2.58




method result size



risch 16x248x+(5x210x+5)e6x5+(40x2+100x60)e3x5+eee210x2+(10xe3x+40x+10e3x60)eee220x25 80



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/5*(-exp(exp(2))*exp(1/20*exp(exp(2))/x^2)^2+(((x-1)*exp(3*x)+6-4*x)*exp(exp(2))+(-30*x^4+20*x^3)*exp(3*x
)+40*x^3)*exp(1/20*exp(exp(2))/x^2)+(30*x^5-50*x^4+20*x^3)*exp(3*x)^2+(-120*x^5+220*x^4-80*x^3)*exp(3*x)+160*x
^4-240*x^3)/x^3,x,method=_RETURNVERBOSE)

[Out]

16*x^2-48*x+1/5*(5*x^2-10*x+5)*exp(6*x)+1/5*(-40*x^2+100*x-60)*exp(3*x)+exp(1/10*exp(exp(2))/x^2)+1/5*(-10*x*e
xp(3*x)+40*x+10*exp(3*x)-60)*exp(1/20*exp(exp(2))/x^2)

________________________________________________________________________________________

maxima [C]  time = 0.83, size = 181, normalized size = 5.84 215xe(e2)x2Γ(12,e(e2)20x2)+16x2+118(18x26x+1)e(6x)518(6x1)e(6x)89(9x26x+2)e(3x)+449(3x1)e(3x)2(x1)e(3x+e(e2)20x2)+415π(erf(1215e(e2)x2)1)e(e2)xe(e2)x248x+23e(6x)163e(3x)+e(e(e2)10x2)12e(e(e2)20x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*(-exp(exp(2))*exp(1/20*exp(exp(2))/x^2)^2+(((x-1)*exp(3*x)+6-4*x)*exp(exp(2))+(-30*x^4+20*x^3)*e
xp(3*x)+40*x^3)*exp(1/20*exp(exp(2))/x^2)+(30*x^5-50*x^4+20*x^3)*exp(3*x)^2+(-120*x^5+220*x^4-80*x^3)*exp(3*x)
+160*x^4-240*x^3)/x^3,x, algorithm="maxima")

[Out]

2*sqrt(1/5)*x*sqrt(-e^(e^2)/x^2)*gamma(-1/2, -1/20*e^(e^2)/x^2) + 16*x^2 + 1/18*(18*x^2 - 6*x + 1)*e^(6*x) - 5
/18*(6*x - 1)*e^(6*x) - 8/9*(9*x^2 - 6*x + 2)*e^(3*x) + 44/9*(3*x - 1)*e^(3*x) - 2*(x - 1)*e^(3*x + 1/20*e^(e^
2)/x^2) + 4*sqrt(1/5)*sqrt(pi)*(erf(1/2*sqrt(1/5)*sqrt(-e^(e^2)/x^2)) - 1)*e^(e^2)/(x*sqrt(-e^(e^2)/x^2)) - 48
*x + 2/3*e^(6*x) - 16/3*e^(3*x) + e^(1/10*e^(e^2)/x^2) - 12*e^(1/20*e^(e^2)/x^2)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 eee210x2ee25eee220x2(e3x(20x330x4)+ee2(e3x(x1)4x+6)+40x3)5e6x(30x550x4+20x3)5+e3x(120x5220x4+80x3)5+48x332x4x3dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((exp(exp(exp(2))/(10*x^2))*exp(exp(2)))/5 - (exp(exp(exp(2))/(20*x^2))*(exp(3*x)*(20*x^3 - 30*x^4) + exp
(exp(2))*(exp(3*x)*(x - 1) - 4*x + 6) + 40*x^3))/5 - (exp(6*x)*(20*x^3 - 50*x^4 + 30*x^5))/5 + (exp(3*x)*(80*x
^3 - 220*x^4 + 120*x^5))/5 + 48*x^3 - 32*x^4)/x^3,x)

[Out]

int(-((exp(exp(exp(2))/(10*x^2))*exp(exp(2)))/5 - (exp(exp(exp(2))/(20*x^2))*(exp(3*x)*(20*x^3 - 30*x^4) + exp
(exp(2))*(exp(3*x)*(x - 1) - 4*x + 6) + 40*x^3))/5 - (exp(6*x)*(20*x^3 - 50*x^4 + 30*x^5))/5 + (exp(3*x)*(80*x
^3 - 220*x^4 + 120*x^5))/5 + 48*x^3 - 32*x^4)/x^3, x)

________________________________________________________________________________________

sympy [B]  time = 7.67, size = 80, normalized size = 2.58 16x248x+(8x2+20x12)e3x+(x22x+1)e6x+(2xe3x+8x+2e3x12)eee220x2+eee210x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*(-exp(exp(2))*exp(1/20*exp(exp(2))/x**2)**2+(((x-1)*exp(3*x)+6-4*x)*exp(exp(2))+(-30*x**4+20*x**
3)*exp(3*x)+40*x**3)*exp(1/20*exp(exp(2))/x**2)+(30*x**5-50*x**4+20*x**3)*exp(3*x)**2+(-120*x**5+220*x**4-80*x
**3)*exp(3*x)+160*x**4-240*x**3)/x**3,x)

[Out]

16*x**2 - 48*x + (-8*x**2 + 20*x - 12)*exp(3*x) + (x**2 - 2*x + 1)*exp(6*x) + (-2*x*exp(3*x) + 8*x + 2*exp(3*x
) - 12)*exp(exp(exp(2))/(20*x**2)) + exp(exp(exp(2))/(10*x**2))

________________________________________________________________________________________