3.17.10
Optimal. Leaf size=31
________________________________________________________________________________________
Rubi [F] time = 3.24, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-E^(E^2 + E^E^2/(10*x^2)) - 240*x^3 + 160*x^4 + E^(3*x)*(-80*x^3 + 220*x^4 - 120*x^5) + E^(6*x)*(20*x^3 -
50*x^4 + 30*x^5) + E^(E^E^2/(20*x^2))*(E^E^2*(6 + E^(3*x)*(-1 + x) - 4*x) + 40*x^3 + E^(3*x)*(20*x^3 - 30*x^4
)))/(5*x^3),x]
[Out]
-12*E^(3*x) + E^(6*x) + (6 - E^(E^E^2/(20*x^2)) - 4*x)^2 + 20*E^(3*x)*x - 2*E^(6*x)*x - 8*E^(3*x)*x^2 + E^(6*x
)*x^2 + 4*Defer[Int][E^((E^E^2 + 60*x^3)/(20*x^2)), x] - Defer[Int][E^(E^2 + (E^E^2 + 60*x^3)/(20*x^2))/x^3, x
]/5 + Defer[Int][E^(E^2 + (E^E^2 + 60*x^3)/(20*x^2))/x^2, x]/5 - 6*Defer[Int][E^((E^E^2 + 60*x^3)/(20*x^2))*x,
x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 1.76, size = 91, normalized size = 2.94
Antiderivative was successfully verified.
[In]
Integrate[(-E^(E^2 + E^E^2/(10*x^2)) - 240*x^3 + 160*x^4 + E^(3*x)*(-80*x^3 + 220*x^4 - 120*x^5) + E^(6*x)*(20
*x^3 - 50*x^4 + 30*x^5) + E^(E^E^2/(20*x^2))*(E^E^2*(6 + E^(3*x)*(-1 + x) - 4*x) + 40*x^3 + E^(3*x)*(20*x^3 -
30*x^4)))/(5*x^3),x]
[Out]
(5*E^(E^E^2/(10*x^2)) - E^(E^E^2/(20*x^2))*(60 - 40*x) + 5*E^(6*x)*(-1 + x)^2 - 240*x + 80*x^2 - 10*E^(3*x)*(-
1 + x)*(-6 + E^(E^E^2/(20*x^2)) + 4*x))/5
________________________________________________________________________________________
fricas [B] time = 0.74, size = 71, normalized size = 2.29
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/5*(-exp(exp(2))*exp(1/20*exp(exp(2))/x^2)^2+(((x-1)*exp(3*x)+6-4*x)*exp(exp(2))+(-30*x^4+20*x^3)*e
xp(3*x)+40*x^3)*exp(1/20*exp(exp(2))/x^2)+(30*x^5-50*x^4+20*x^3)*exp(3*x)^2+(-120*x^5+220*x^4-80*x^3)*exp(3*x)
+160*x^4-240*x^3)/x^3,x, algorithm="fricas")
[Out]
16*x^2 + (x^2 - 2*x + 1)*e^(6*x) - 4*(2*x^2 - 5*x + 3)*e^(3*x) - 2*((x - 1)*e^(3*x) - 4*x + 6)*e^(1/20*e^(e^2)
/x^2) - 48*x + e^(1/10*e^(e^2)/x^2)
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/5*(-exp(exp(2))*exp(1/20*exp(exp(2))/x^2)^2+(((x-1)*exp(3*x)+6-4*x)*exp(exp(2))+(-30*x^4+20*x^3)*e
xp(3*x)+40*x^3)*exp(1/20*exp(exp(2))/x^2)+(30*x^5-50*x^4+20*x^3)*exp(3*x)^2+(-120*x^5+220*x^4-80*x^3)*exp(3*x)
+160*x^4-240*x^3)/x^3,x, algorithm="giac")
[Out]
integrate(1/5*(160*x^4 - 240*x^3 + 10*(3*x^5 - 5*x^4 + 2*x^3)*e^(6*x) - 20*(6*x^5 - 11*x^4 + 4*x^3)*e^(3*x) +
(40*x^3 - 10*(3*x^4 - 2*x^3)*e^(3*x) + ((x - 1)*e^(3*x) - 4*x + 6)*e^(e^2))*e^(1/20*e^(e^2)/x^2) - e^(1/10*e^(
e^2)/x^2 + e^2))/x^3, x)
________________________________________________________________________________________
maple [B] time = 0.14, size = 80, normalized size = 2.58
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(1/5*(-exp(exp(2))*exp(1/20*exp(exp(2))/x^2)^2+(((x-1)*exp(3*x)+6-4*x)*exp(exp(2))+(-30*x^4+20*x^3)*exp(3*x
)+40*x^3)*exp(1/20*exp(exp(2))/x^2)+(30*x^5-50*x^4+20*x^3)*exp(3*x)^2+(-120*x^5+220*x^4-80*x^3)*exp(3*x)+160*x
^4-240*x^3)/x^3,x,method=_RETURNVERBOSE)
[Out]
16*x^2-48*x+1/5*(5*x^2-10*x+5)*exp(6*x)+1/5*(-40*x^2+100*x-60)*exp(3*x)+exp(1/10*exp(exp(2))/x^2)+1/5*(-10*x*e
xp(3*x)+40*x+10*exp(3*x)-60)*exp(1/20*exp(exp(2))/x^2)
________________________________________________________________________________________
maxima [C] time = 0.83, size = 181, normalized size = 5.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/5*(-exp(exp(2))*exp(1/20*exp(exp(2))/x^2)^2+(((x-1)*exp(3*x)+6-4*x)*exp(exp(2))+(-30*x^4+20*x^3)*e
xp(3*x)+40*x^3)*exp(1/20*exp(exp(2))/x^2)+(30*x^5-50*x^4+20*x^3)*exp(3*x)^2+(-120*x^5+220*x^4-80*x^3)*exp(3*x)
+160*x^4-240*x^3)/x^3,x, algorithm="maxima")
[Out]
2*sqrt(1/5)*x*sqrt(-e^(e^2)/x^2)*gamma(-1/2, -1/20*e^(e^2)/x^2) + 16*x^2 + 1/18*(18*x^2 - 6*x + 1)*e^(6*x) - 5
/18*(6*x - 1)*e^(6*x) - 8/9*(9*x^2 - 6*x + 2)*e^(3*x) + 44/9*(3*x - 1)*e^(3*x) - 2*(x - 1)*e^(3*x + 1/20*e^(e^
2)/x^2) + 4*sqrt(1/5)*sqrt(pi)*(erf(1/2*sqrt(1/5)*sqrt(-e^(e^2)/x^2)) - 1)*e^(e^2)/(x*sqrt(-e^(e^2)/x^2)) - 48
*x + 2/3*e^(6*x) - 16/3*e^(3*x) + e^(1/10*e^(e^2)/x^2) - 12*e^(1/20*e^(e^2)/x^2)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-((exp(exp(exp(2))/(10*x^2))*exp(exp(2)))/5 - (exp(exp(exp(2))/(20*x^2))*(exp(3*x)*(20*x^3 - 30*x^4) + exp
(exp(2))*(exp(3*x)*(x - 1) - 4*x + 6) + 40*x^3))/5 - (exp(6*x)*(20*x^3 - 50*x^4 + 30*x^5))/5 + (exp(3*x)*(80*x
^3 - 220*x^4 + 120*x^5))/5 + 48*x^3 - 32*x^4)/x^3,x)
[Out]
int(-((exp(exp(exp(2))/(10*x^2))*exp(exp(2)))/5 - (exp(exp(exp(2))/(20*x^2))*(exp(3*x)*(20*x^3 - 30*x^4) + exp
(exp(2))*(exp(3*x)*(x - 1) - 4*x + 6) + 40*x^3))/5 - (exp(6*x)*(20*x^3 - 50*x^4 + 30*x^5))/5 + (exp(3*x)*(80*x
^3 - 220*x^4 + 120*x^5))/5 + 48*x^3 - 32*x^4)/x^3, x)
________________________________________________________________________________________
sympy [B] time = 7.67, size = 80, normalized size = 2.58
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/5*(-exp(exp(2))*exp(1/20*exp(exp(2))/x**2)**2+(((x-1)*exp(3*x)+6-4*x)*exp(exp(2))+(-30*x**4+20*x**
3)*exp(3*x)+40*x**3)*exp(1/20*exp(exp(2))/x**2)+(30*x**5-50*x**4+20*x**3)*exp(3*x)**2+(-120*x**5+220*x**4-80*x
**3)*exp(3*x)+160*x**4-240*x**3)/x**3,x)
[Out]
16*x**2 - 48*x + (-8*x**2 + 20*x - 12)*exp(3*x) + (x**2 - 2*x + 1)*exp(6*x) + (-2*x*exp(3*x) + 8*x + 2*exp(3*x
) - 12)*exp(exp(exp(2))/(20*x**2)) + exp(exp(exp(2))/(10*x**2))
________________________________________________________________________________________