3.17.24 3e6exx+20x90e5exxx2+3x3+2000x4+225x6+5625x9+46875x12+e4exx(9x+1125x4)+e3exx(180x37500x6)+e2exx(9x2+1350x5+28125x8+ex(40x+40x2))+eexx(400x290x44500x756250x10+ex(200x3200x4))3e6exxx90e5exxx3+3x4+225x7+5625x10+46875x13+e4exx(9x2+1125x5)+e3exx(180x47500x7)+e2exx(9x3+1350x6+28125x9)+eexx(90x54500x856250x11)dx

Optimal. Leaf size=26 103(x+(eexx5x2)2)2+log(x)

________________________________________________________________________________________

Rubi [F]  time = 9.75, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 3e6exx+20x90e5exxx2+3x3+2000x4+225x6+5625x9+46875x12+e4exx(9x+1125x4)+e3exx(180x37500x6)+e2exx(9x2+1350x5+28125x8+ex(40x+40x2))+eexx(400x290x44500x756250x10+ex(200x3200x4))3e6exxx90e5exxx3+3x4+225x7+5625x10+46875x13+e4exx(9x2+1125x5)+e3exx(180x47500x7)+e2exx(9x3+1350x6+28125x9)+eexx(90x54500x856250x11)dx

Verification is not applicable to the result.

[In]

Int[(3*E^(6*E^x*x) + 20*x - 90*E^(5*E^x*x)*x^2 + 3*x^3 + 2000*x^4 + 225*x^6 + 5625*x^9 + 46875*x^12 + E^(4*E^x
*x)*(9*x + 1125*x^4) + E^(3*E^x*x)*(-180*x^3 - 7500*x^6) + E^(2*E^x*x)*(9*x^2 + 1350*x^5 + 28125*x^8 + E^x*(40
*x + 40*x^2)) + E^(E^x*x)*(-400*x^2 - 90*x^4 - 4500*x^7 - 56250*x^10 + E^x*(-200*x^3 - 200*x^4)))/(3*E^(6*E^x*
x)*x - 90*E^(5*E^x*x)*x^3 + 3*x^4 + 225*x^7 + 5625*x^10 + 46875*x^13 + E^(4*E^x*x)*(9*x^2 + 1125*x^5) + E^(3*E
^x*x)*(-180*x^4 - 7500*x^7) + E^(2*E^x*x)*(9*x^3 + 1350*x^6 + 28125*x^9) + E^(E^x*x)*(-90*x^5 - 4500*x^8 - 562
50*x^11)),x]

[Out]

Log[x] + (20*Defer[Int][(E^(2*E^x*x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^(-3), x])/3 - (40*Defer[Int][(E^x*x)/(E^
(2*E^x*x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^3, x])/3 - (400*Defer[Int][(E^(E^x*x)*x)/(E^(2*E^x*x) + x - 10*E^(E
^x*x)*x^2 + 25*x^4)^3, x])/3 - (40*Defer[Int][(E^x*x^2)/(E^(2*E^x*x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^3, x])/3
 + (200*Defer[Int][(E^(x + E^x*x)*x^2)/(E^(2*E^x*x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^3, x])/3 + (2000*Defer[In
t][x^3/(E^(2*E^x*x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^3, x])/3 + (200*Defer[Int][(E^(x + E^x*x)*x^3)/(E^(2*E^x*
x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^3, x])/3 - (1000*Defer[Int][(E^x*x^4)/(E^(2*E^x*x) + x - 10*E^(E^x*x)*x^2
+ 25*x^4)^3, x])/3 - (1000*Defer[Int][(E^x*x^5)/(E^(2*E^x*x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^3, x])/3 + (40*D
efer[Int][E^x/(E^(2*E^x*x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^2, x])/3 + (40*Defer[Int][(E^x*x)/(E^(2*E^x*x) + x
 - 10*E^(E^x*x)*x^2 + 25*x^4)^2, x])/3

Rubi steps

integral=3e6exx90e5exxx2+40ex+2exxx(1+x)200ex+exxx3(1+x)+9e4exxx(1+125x3)60e3exxx3(3+125x3)+9e2exxx2(1+150x3+3125x6)10eexxx2(40+9x2+450x5+5625x8)+x(20+3x2+2000x3+225x5+5625x8+46875x11)3x(e2exx+x10eexxx2+25x4)3dx=133e6exx90e5exxx2+40ex+2exxx(1+x)200ex+exxx3(1+x)+9e4exxx(1+125x3)60e3exxx3(3+125x3)+9e2exxx2(1+150x3+3125x6)10eexxx2(40+9x2+450x5+5625x8)+x(20+3x2+2000x3+225x5+5625x8+46875x11)x(e2exx+x10eexxx2+25x4)3dx=13(3x+40ex(1+x)(e2exx+x10eexxx2+25x4)2+20(12exx20eexxx2exx2+10ex+exxx2+100x3+10ex+exxx350exx450exx5)(e2exx+x10eexxx2+25x4)3)dx=log(x)+20312exx20eexxx2exx2+10ex+exxx2+100x3+10ex+exxx350exx450exx5(e2exx+x10eexxx2+25x4)3dx+403ex(1+x)(e2exx+x10eexxx2+25x4)2dx=log(x)+203120eexxx+100x3+10ex+exxx2(1+x)2exx(1+x+25x3+25x4)(e2exx+x10eexxx2+25x4)3dx+403(ex(e2exx+x10eexxx2+25x4)2+exx(e2exx+x10eexxx2+25x4)2)dx=log(x)+203(1(e2exx+x10eexxx2+25x4)32exx(e2exx+x10eexxx2+25x4)320eexxx(e2exx+x10eexxx2+25x4)32exx2(e2exx+x10eexxx2+25x4)3+10ex+exxx2(e2exx+x10eexxx2+25x4)3+100x3(e2exx+x10eexxx2+25x4)3+10ex+exxx3(e2exx+x10eexxx2+25x4)350exx4(e2exx+x10eexxx2+25x4)350exx5(e2exx+x10eexxx2+25x4)3)dx+403ex(e2exx+x10eexxx2+25x4)2dx+403exx(e2exx+x10eexxx2+25x4)2dx=log(x)+2031(e2exx+x10eexxx2+25x4)3dx403exx(e2exx+x10eexxx2+25x4)3dx403exx2(e2exx+x10eexxx2+25x4)3dx+403ex(e2exx+x10eexxx2+25x4)2dx+403exx(e2exx+x10eexxx2+25x4)2dx+2003ex+exxx2(e2exx+x10eexxx2+25x4)3dx+2003ex+exxx3(e2exx+x10eexxx2+25x4)3dx4003eexxx(e2exx+x10eexxx2+25x4)3dx10003exx4(e2exx+x10eexxx2+25x4)3dx10003exx5(e2exx+x10eexxx2+25x4)3dx+20003x3(e2exx+x10eexxx2+25x4)3dx

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 40, normalized size = 1.54 13(10(e2exx+x10eexxx2+25x4)2+3log(x))

Antiderivative was successfully verified.

[In]

Integrate[(3*E^(6*E^x*x) + 20*x - 90*E^(5*E^x*x)*x^2 + 3*x^3 + 2000*x^4 + 225*x^6 + 5625*x^9 + 46875*x^12 + E^
(4*E^x*x)*(9*x + 1125*x^4) + E^(3*E^x*x)*(-180*x^3 - 7500*x^6) + E^(2*E^x*x)*(9*x^2 + 1350*x^5 + 28125*x^8 + E
^x*(40*x + 40*x^2)) + E^(E^x*x)*(-400*x^2 - 90*x^4 - 4500*x^7 - 56250*x^10 + E^x*(-200*x^3 - 200*x^4)))/(3*E^(
6*E^x*x)*x - 90*E^(5*E^x*x)*x^3 + 3*x^4 + 225*x^7 + 5625*x^10 + 46875*x^13 + E^(4*E^x*x)*(9*x^2 + 1125*x^5) +
E^(3*E^x*x)*(-180*x^4 - 7500*x^7) + E^(2*E^x*x)*(9*x^3 + 1350*x^6 + 28125*x^9) + E^(E^x*x)*(-90*x^5 - 4500*x^8
 - 56250*x^11)),x]

[Out]

(-10/(E^(2*E^x*x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^2 + 3*Log[x])/3

________________________________________________________________________________________

fricas [B]  time = 0.74, size = 144, normalized size = 5.54 60x2e(3xex)log(x)6(75x4+x)e(2xex)log(x)+60(25x6+x3)e(xex)log(x)3(625x8+50x5+x2)log(x)3e(4xex)log(x)+103(625x8+50x520x2e(3xex)+x2+2(75x4+x)e(2xex)20(25x6+x3)e(xex)+e(4xex))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*exp(exp(x)*x)^6-90*x^2*exp(exp(x)*x)^5+(1125*x^4+9*x)*exp(exp(x)*x)^4+(-7500*x^6-180*x^3)*exp(exp
(x)*x)^3+((40*x^2+40*x)*exp(x)+28125*x^8+1350*x^5+9*x^2)*exp(exp(x)*x)^2+((-200*x^4-200*x^3)*exp(x)-56250*x^10
-4500*x^7-90*x^4-400*x^2)*exp(exp(x)*x)+46875*x^12+5625*x^9+225*x^6+2000*x^4+3*x^3+20*x)/(3*x*exp(exp(x)*x)^6-
90*x^3*exp(exp(x)*x)^5+(1125*x^5+9*x^2)*exp(exp(x)*x)^4+(-7500*x^7-180*x^4)*exp(exp(x)*x)^3+(28125*x^9+1350*x^
6+9*x^3)*exp(exp(x)*x)^2+(-56250*x^11-4500*x^8-90*x^5)*exp(exp(x)*x)+46875*x^13+5625*x^10+225*x^7+3*x^4),x, al
gorithm="fricas")

[Out]

-1/3*(60*x^2*e^(3*x*e^x)*log(x) - 6*(75*x^4 + x)*e^(2*x*e^x)*log(x) + 60*(25*x^6 + x^3)*e^(x*e^x)*log(x) - 3*(
625*x^8 + 50*x^5 + x^2)*log(x) - 3*e^(4*x*e^x)*log(x) + 10)/(625*x^8 + 50*x^5 - 20*x^2*e^(3*x*e^x) + x^2 + 2*(
75*x^4 + x)*e^(2*x*e^x) - 20*(25*x^6 + x^3)*e^(x*e^x) + e^(4*x*e^x))

________________________________________________________________________________________

giac [B]  time = 36.95, size = 169, normalized size = 6.50 1875x8log(x)1500x6e(xex)log(x)+150x5log(x)+450x4e(2xex)log(x)60x3e(xex)log(x)60x2e(3xex)log(x)+3x2log(x)+6xe(2xex)log(x)+3e(4xex)log(x)203(625x8500x6e(xex)+50x5+150x4e(2xex)20x3e(xex)20x2e(3xex)+x2+2xe(2xex)+e(4xex))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*exp(exp(x)*x)^6-90*x^2*exp(exp(x)*x)^5+(1125*x^4+9*x)*exp(exp(x)*x)^4+(-7500*x^6-180*x^3)*exp(exp
(x)*x)^3+((40*x^2+40*x)*exp(x)+28125*x^8+1350*x^5+9*x^2)*exp(exp(x)*x)^2+((-200*x^4-200*x^3)*exp(x)-56250*x^10
-4500*x^7-90*x^4-400*x^2)*exp(exp(x)*x)+46875*x^12+5625*x^9+225*x^6+2000*x^4+3*x^3+20*x)/(3*x*exp(exp(x)*x)^6-
90*x^3*exp(exp(x)*x)^5+(1125*x^5+9*x^2)*exp(exp(x)*x)^4+(-7500*x^7-180*x^4)*exp(exp(x)*x)^3+(28125*x^9+1350*x^
6+9*x^3)*exp(exp(x)*x)^2+(-56250*x^11-4500*x^8-90*x^5)*exp(exp(x)*x)+46875*x^13+5625*x^10+225*x^7+3*x^4),x, al
gorithm="giac")

[Out]

1/3*(1875*x^8*log(x) - 1500*x^6*e^(x*e^x)*log(x) + 150*x^5*log(x) + 450*x^4*e^(2*x*e^x)*log(x) - 60*x^3*e^(x*e
^x)*log(x) - 60*x^2*e^(3*x*e^x)*log(x) + 3*x^2*log(x) + 6*x*e^(2*x*e^x)*log(x) + 3*e^(4*x*e^x)*log(x) - 20)/(6
25*x^8 - 500*x^6*e^(x*e^x) + 50*x^5 + 150*x^4*e^(2*x*e^x) - 20*x^3*e^(x*e^x) - 20*x^2*e^(3*x*e^x) + x^2 + 2*x*
e^(2*x*e^x) + e^(4*x*e^x))

________________________________________________________________________________________

maple [A]  time = 0.09, size = 31, normalized size = 1.19




method result size



risch ln(x)103(25x410eexxx2+e2exx+x)2 31



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*exp(exp(x)*x)^6-90*x^2*exp(exp(x)*x)^5+(1125*x^4+9*x)*exp(exp(x)*x)^4+(-7500*x^6-180*x^3)*exp(exp(x)*x)
^3+((40*x^2+40*x)*exp(x)+28125*x^8+1350*x^5+9*x^2)*exp(exp(x)*x)^2+((-200*x^4-200*x^3)*exp(x)-56250*x^10-4500*
x^7-90*x^4-400*x^2)*exp(exp(x)*x)+46875*x^12+5625*x^9+225*x^6+2000*x^4+3*x^3+20*x)/(3*x*exp(exp(x)*x)^6-90*x^3
*exp(exp(x)*x)^5+(1125*x^5+9*x^2)*exp(exp(x)*x)^4+(-7500*x^7-180*x^4)*exp(exp(x)*x)^3+(28125*x^9+1350*x^6+9*x^
3)*exp(exp(x)*x)^2+(-56250*x^11-4500*x^8-90*x^5)*exp(exp(x)*x)+46875*x^13+5625*x^10+225*x^7+3*x^4),x,method=_R
ETURNVERBOSE)

[Out]

ln(x)-10/3/(25*x^4-10*exp(exp(x)*x)*x^2+exp(2*exp(x)*x)+x)^2

________________________________________________________________________________________

maxima [B]  time = 0.96, size = 69, normalized size = 2.65 103(625x8+50x520x2e(3xex)+x2+2(75x4+x)e(2xex)20(25x6+x3)e(xex)+e(4xex))+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*exp(exp(x)*x)^6-90*x^2*exp(exp(x)*x)^5+(1125*x^4+9*x)*exp(exp(x)*x)^4+(-7500*x^6-180*x^3)*exp(exp
(x)*x)^3+((40*x^2+40*x)*exp(x)+28125*x^8+1350*x^5+9*x^2)*exp(exp(x)*x)^2+((-200*x^4-200*x^3)*exp(x)-56250*x^10
-4500*x^7-90*x^4-400*x^2)*exp(exp(x)*x)+46875*x^12+5625*x^9+225*x^6+2000*x^4+3*x^3+20*x)/(3*x*exp(exp(x)*x)^6-
90*x^3*exp(exp(x)*x)^5+(1125*x^5+9*x^2)*exp(exp(x)*x)^4+(-7500*x^7-180*x^4)*exp(exp(x)*x)^3+(28125*x^9+1350*x^
6+9*x^3)*exp(exp(x)*x)^2+(-56250*x^11-4500*x^8-90*x^5)*exp(exp(x)*x)+46875*x^13+5625*x^10+225*x^7+3*x^4),x, al
gorithm="maxima")

[Out]

-10/3/(625*x^8 + 50*x^5 - 20*x^2*e^(3*x*e^x) + x^2 + 2*(75*x^4 + x)*e^(2*x*e^x) - 20*(25*x^6 + x^3)*e^(x*e^x)
+ e^(4*x*e^x)) + log(x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 20x+3e6xex+e2xex(ex(40x2+40x)+9x2+1350x5+28125x8)e3xex(7500x6+180x3)90x2e5xexexex(ex(200x4+200x3)+400x2+90x4+4500x7+56250x10)+3x3+2000x4+225x6+5625x9+46875x12+e4xex(1125x4+9x)e4xex(1125x5+9x2)e3xex(7500x7+180x4)90x3e5xex+e2xex(28125x9+1350x6+9x3)exex(56250x11+4500x8+90x5)+3x4+225x7+5625x10+46875x13+3xe6xexdx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((20*x + 3*exp(6*x*exp(x)) + exp(2*x*exp(x))*(exp(x)*(40*x + 40*x^2) + 9*x^2 + 1350*x^5 + 28125*x^8) - exp(
3*x*exp(x))*(180*x^3 + 7500*x^6) - 90*x^2*exp(5*x*exp(x)) - exp(x*exp(x))*(exp(x)*(200*x^3 + 200*x^4) + 400*x^
2 + 90*x^4 + 4500*x^7 + 56250*x^10) + 3*x^3 + 2000*x^4 + 225*x^6 + 5625*x^9 + 46875*x^12 + exp(4*x*exp(x))*(9*
x + 1125*x^4))/(exp(4*x*exp(x))*(9*x^2 + 1125*x^5) - exp(3*x*exp(x))*(180*x^4 + 7500*x^7) - 90*x^3*exp(5*x*exp
(x)) + exp(2*x*exp(x))*(9*x^3 + 1350*x^6 + 28125*x^9) - exp(x*exp(x))*(90*x^5 + 4500*x^8 + 56250*x^11) + 3*x^4
 + 225*x^7 + 5625*x^10 + 46875*x^13 + 3*x*exp(6*x*exp(x))),x)

[Out]

int((20*x + 3*exp(6*x*exp(x)) + exp(2*x*exp(x))*(exp(x)*(40*x + 40*x^2) + 9*x^2 + 1350*x^5 + 28125*x^8) - exp(
3*x*exp(x))*(180*x^3 + 7500*x^6) - 90*x^2*exp(5*x*exp(x)) - exp(x*exp(x))*(exp(x)*(200*x^3 + 200*x^4) + 400*x^
2 + 90*x^4 + 4500*x^7 + 56250*x^10) + 3*x^3 + 2000*x^4 + 225*x^6 + 5625*x^9 + 46875*x^12 + exp(4*x*exp(x))*(9*
x + 1125*x^4))/(exp(4*x*exp(x))*(9*x^2 + 1125*x^5) - exp(3*x*exp(x))*(180*x^4 + 7500*x^7) - 90*x^3*exp(5*x*exp
(x)) + exp(2*x*exp(x))*(9*x^3 + 1350*x^6 + 28125*x^9) - exp(x*exp(x))*(90*x^5 + 4500*x^8 + 56250*x^11) + 3*x^4
 + 225*x^7 + 5625*x^10 + 46875*x^13 + 3*x*exp(6*x*exp(x))), x)

________________________________________________________________________________________

sympy [B]  time = 0.48, size = 78, normalized size = 3.00 log(x)101875x8+150x560x2e3xex+3x2+(450x4+6x)e2xex+(1500x660x3)exex+3e4xex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*exp(exp(x)*x)**6-90*x**2*exp(exp(x)*x)**5+(1125*x**4+9*x)*exp(exp(x)*x)**4+(-7500*x**6-180*x**3)*
exp(exp(x)*x)**3+((40*x**2+40*x)*exp(x)+28125*x**8+1350*x**5+9*x**2)*exp(exp(x)*x)**2+((-200*x**4-200*x**3)*ex
p(x)-56250*x**10-4500*x**7-90*x**4-400*x**2)*exp(exp(x)*x)+46875*x**12+5625*x**9+225*x**6+2000*x**4+3*x**3+20*
x)/(3*x*exp(exp(x)*x)**6-90*x**3*exp(exp(x)*x)**5+(1125*x**5+9*x**2)*exp(exp(x)*x)**4+(-7500*x**7-180*x**4)*ex
p(exp(x)*x)**3+(28125*x**9+1350*x**6+9*x**3)*exp(exp(x)*x)**2+(-56250*x**11-4500*x**8-90*x**5)*exp(exp(x)*x)+4
6875*x**13+5625*x**10+225*x**7+3*x**4),x)

[Out]

log(x) - 10/(1875*x**8 + 150*x**5 - 60*x**2*exp(3*x*exp(x)) + 3*x**2 + (450*x**4 + 6*x)*exp(2*x*exp(x)) + (-15
00*x**6 - 60*x**3)*exp(x*exp(x)) + 3*exp(4*x*exp(x)))

________________________________________________________________________________________