3.17.24
Optimal. Leaf size=26
________________________________________________________________________________________
Rubi [F] time = 9.75, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(3*E^(6*E^x*x) + 20*x - 90*E^(5*E^x*x)*x^2 + 3*x^3 + 2000*x^4 + 225*x^6 + 5625*x^9 + 46875*x^12 + E^(4*E^x
*x)*(9*x + 1125*x^4) + E^(3*E^x*x)*(-180*x^3 - 7500*x^6) + E^(2*E^x*x)*(9*x^2 + 1350*x^5 + 28125*x^8 + E^x*(40
*x + 40*x^2)) + E^(E^x*x)*(-400*x^2 - 90*x^4 - 4500*x^7 - 56250*x^10 + E^x*(-200*x^3 - 200*x^4)))/(3*E^(6*E^x*
x)*x - 90*E^(5*E^x*x)*x^3 + 3*x^4 + 225*x^7 + 5625*x^10 + 46875*x^13 + E^(4*E^x*x)*(9*x^2 + 1125*x^5) + E^(3*E
^x*x)*(-180*x^4 - 7500*x^7) + E^(2*E^x*x)*(9*x^3 + 1350*x^6 + 28125*x^9) + E^(E^x*x)*(-90*x^5 - 4500*x^8 - 562
50*x^11)),x]
[Out]
Log[x] + (20*Defer[Int][(E^(2*E^x*x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^(-3), x])/3 - (40*Defer[Int][(E^x*x)/(E^
(2*E^x*x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^3, x])/3 - (400*Defer[Int][(E^(E^x*x)*x)/(E^(2*E^x*x) + x - 10*E^(E
^x*x)*x^2 + 25*x^4)^3, x])/3 - (40*Defer[Int][(E^x*x^2)/(E^(2*E^x*x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^3, x])/3
+ (200*Defer[Int][(E^(x + E^x*x)*x^2)/(E^(2*E^x*x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^3, x])/3 + (2000*Defer[In
t][x^3/(E^(2*E^x*x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^3, x])/3 + (200*Defer[Int][(E^(x + E^x*x)*x^3)/(E^(2*E^x*
x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^3, x])/3 - (1000*Defer[Int][(E^x*x^4)/(E^(2*E^x*x) + x - 10*E^(E^x*x)*x^2
+ 25*x^4)^3, x])/3 - (1000*Defer[Int][(E^x*x^5)/(E^(2*E^x*x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^3, x])/3 + (40*D
efer[Int][E^x/(E^(2*E^x*x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^2, x])/3 + (40*Defer[Int][(E^x*x)/(E^(2*E^x*x) + x
- 10*E^(E^x*x)*x^2 + 25*x^4)^2, x])/3
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 40, normalized size = 1.54
Antiderivative was successfully verified.
[In]
Integrate[(3*E^(6*E^x*x) + 20*x - 90*E^(5*E^x*x)*x^2 + 3*x^3 + 2000*x^4 + 225*x^6 + 5625*x^9 + 46875*x^12 + E^
(4*E^x*x)*(9*x + 1125*x^4) + E^(3*E^x*x)*(-180*x^3 - 7500*x^6) + E^(2*E^x*x)*(9*x^2 + 1350*x^5 + 28125*x^8 + E
^x*(40*x + 40*x^2)) + E^(E^x*x)*(-400*x^2 - 90*x^4 - 4500*x^7 - 56250*x^10 + E^x*(-200*x^3 - 200*x^4)))/(3*E^(
6*E^x*x)*x - 90*E^(5*E^x*x)*x^3 + 3*x^4 + 225*x^7 + 5625*x^10 + 46875*x^13 + E^(4*E^x*x)*(9*x^2 + 1125*x^5) +
E^(3*E^x*x)*(-180*x^4 - 7500*x^7) + E^(2*E^x*x)*(9*x^3 + 1350*x^6 + 28125*x^9) + E^(E^x*x)*(-90*x^5 - 4500*x^8
- 56250*x^11)),x]
[Out]
(-10/(E^(2*E^x*x) + x - 10*E^(E^x*x)*x^2 + 25*x^4)^2 + 3*Log[x])/3
________________________________________________________________________________________
fricas [B] time = 0.74, size = 144, normalized size = 5.54
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((3*exp(exp(x)*x)^6-90*x^2*exp(exp(x)*x)^5+(1125*x^4+9*x)*exp(exp(x)*x)^4+(-7500*x^6-180*x^3)*exp(exp
(x)*x)^3+((40*x^2+40*x)*exp(x)+28125*x^8+1350*x^5+9*x^2)*exp(exp(x)*x)^2+((-200*x^4-200*x^3)*exp(x)-56250*x^10
-4500*x^7-90*x^4-400*x^2)*exp(exp(x)*x)+46875*x^12+5625*x^9+225*x^6+2000*x^4+3*x^3+20*x)/(3*x*exp(exp(x)*x)^6-
90*x^3*exp(exp(x)*x)^5+(1125*x^5+9*x^2)*exp(exp(x)*x)^4+(-7500*x^7-180*x^4)*exp(exp(x)*x)^3+(28125*x^9+1350*x^
6+9*x^3)*exp(exp(x)*x)^2+(-56250*x^11-4500*x^8-90*x^5)*exp(exp(x)*x)+46875*x^13+5625*x^10+225*x^7+3*x^4),x, al
gorithm="fricas")
[Out]
-1/3*(60*x^2*e^(3*x*e^x)*log(x) - 6*(75*x^4 + x)*e^(2*x*e^x)*log(x) + 60*(25*x^6 + x^3)*e^(x*e^x)*log(x) - 3*(
625*x^8 + 50*x^5 + x^2)*log(x) - 3*e^(4*x*e^x)*log(x) + 10)/(625*x^8 + 50*x^5 - 20*x^2*e^(3*x*e^x) + x^2 + 2*(
75*x^4 + x)*e^(2*x*e^x) - 20*(25*x^6 + x^3)*e^(x*e^x) + e^(4*x*e^x))
________________________________________________________________________________________
giac [B] time = 36.95, size = 169, normalized size = 6.50
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((3*exp(exp(x)*x)^6-90*x^2*exp(exp(x)*x)^5+(1125*x^4+9*x)*exp(exp(x)*x)^4+(-7500*x^6-180*x^3)*exp(exp
(x)*x)^3+((40*x^2+40*x)*exp(x)+28125*x^8+1350*x^5+9*x^2)*exp(exp(x)*x)^2+((-200*x^4-200*x^3)*exp(x)-56250*x^10
-4500*x^7-90*x^4-400*x^2)*exp(exp(x)*x)+46875*x^12+5625*x^9+225*x^6+2000*x^4+3*x^3+20*x)/(3*x*exp(exp(x)*x)^6-
90*x^3*exp(exp(x)*x)^5+(1125*x^5+9*x^2)*exp(exp(x)*x)^4+(-7500*x^7-180*x^4)*exp(exp(x)*x)^3+(28125*x^9+1350*x^
6+9*x^3)*exp(exp(x)*x)^2+(-56250*x^11-4500*x^8-90*x^5)*exp(exp(x)*x)+46875*x^13+5625*x^10+225*x^7+3*x^4),x, al
gorithm="giac")
[Out]
1/3*(1875*x^8*log(x) - 1500*x^6*e^(x*e^x)*log(x) + 150*x^5*log(x) + 450*x^4*e^(2*x*e^x)*log(x) - 60*x^3*e^(x*e
^x)*log(x) - 60*x^2*e^(3*x*e^x)*log(x) + 3*x^2*log(x) + 6*x*e^(2*x*e^x)*log(x) + 3*e^(4*x*e^x)*log(x) - 20)/(6
25*x^8 - 500*x^6*e^(x*e^x) + 50*x^5 + 150*x^4*e^(2*x*e^x) - 20*x^3*e^(x*e^x) - 20*x^2*e^(3*x*e^x) + x^2 + 2*x*
e^(2*x*e^x) + e^(4*x*e^x))
________________________________________________________________________________________
maple [A] time = 0.09, size = 31, normalized size = 1.19
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((3*exp(exp(x)*x)^6-90*x^2*exp(exp(x)*x)^5+(1125*x^4+9*x)*exp(exp(x)*x)^4+(-7500*x^6-180*x^3)*exp(exp(x)*x)
^3+((40*x^2+40*x)*exp(x)+28125*x^8+1350*x^5+9*x^2)*exp(exp(x)*x)^2+((-200*x^4-200*x^3)*exp(x)-56250*x^10-4500*
x^7-90*x^4-400*x^2)*exp(exp(x)*x)+46875*x^12+5625*x^9+225*x^6+2000*x^4+3*x^3+20*x)/(3*x*exp(exp(x)*x)^6-90*x^3
*exp(exp(x)*x)^5+(1125*x^5+9*x^2)*exp(exp(x)*x)^4+(-7500*x^7-180*x^4)*exp(exp(x)*x)^3+(28125*x^9+1350*x^6+9*x^
3)*exp(exp(x)*x)^2+(-56250*x^11-4500*x^8-90*x^5)*exp(exp(x)*x)+46875*x^13+5625*x^10+225*x^7+3*x^4),x,method=_R
ETURNVERBOSE)
[Out]
ln(x)-10/3/(25*x^4-10*exp(exp(x)*x)*x^2+exp(2*exp(x)*x)+x)^2
________________________________________________________________________________________
maxima [B] time = 0.96, size = 69, normalized size = 2.65
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((3*exp(exp(x)*x)^6-90*x^2*exp(exp(x)*x)^5+(1125*x^4+9*x)*exp(exp(x)*x)^4+(-7500*x^6-180*x^3)*exp(exp
(x)*x)^3+((40*x^2+40*x)*exp(x)+28125*x^8+1350*x^5+9*x^2)*exp(exp(x)*x)^2+((-200*x^4-200*x^3)*exp(x)-56250*x^10
-4500*x^7-90*x^4-400*x^2)*exp(exp(x)*x)+46875*x^12+5625*x^9+225*x^6+2000*x^4+3*x^3+20*x)/(3*x*exp(exp(x)*x)^6-
90*x^3*exp(exp(x)*x)^5+(1125*x^5+9*x^2)*exp(exp(x)*x)^4+(-7500*x^7-180*x^4)*exp(exp(x)*x)^3+(28125*x^9+1350*x^
6+9*x^3)*exp(exp(x)*x)^2+(-56250*x^11-4500*x^8-90*x^5)*exp(exp(x)*x)+46875*x^13+5625*x^10+225*x^7+3*x^4),x, al
gorithm="maxima")
[Out]
-10/3/(625*x^8 + 50*x^5 - 20*x^2*e^(3*x*e^x) + x^2 + 2*(75*x^4 + x)*e^(2*x*e^x) - 20*(25*x^6 + x^3)*e^(x*e^x)
+ e^(4*x*e^x)) + log(x)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((20*x + 3*exp(6*x*exp(x)) + exp(2*x*exp(x))*(exp(x)*(40*x + 40*x^2) + 9*x^2 + 1350*x^5 + 28125*x^8) - exp(
3*x*exp(x))*(180*x^3 + 7500*x^6) - 90*x^2*exp(5*x*exp(x)) - exp(x*exp(x))*(exp(x)*(200*x^3 + 200*x^4) + 400*x^
2 + 90*x^4 + 4500*x^7 + 56250*x^10) + 3*x^3 + 2000*x^4 + 225*x^6 + 5625*x^9 + 46875*x^12 + exp(4*x*exp(x))*(9*
x + 1125*x^4))/(exp(4*x*exp(x))*(9*x^2 + 1125*x^5) - exp(3*x*exp(x))*(180*x^4 + 7500*x^7) - 90*x^3*exp(5*x*exp
(x)) + exp(2*x*exp(x))*(9*x^3 + 1350*x^6 + 28125*x^9) - exp(x*exp(x))*(90*x^5 + 4500*x^8 + 56250*x^11) + 3*x^4
+ 225*x^7 + 5625*x^10 + 46875*x^13 + 3*x*exp(6*x*exp(x))),x)
[Out]
int((20*x + 3*exp(6*x*exp(x)) + exp(2*x*exp(x))*(exp(x)*(40*x + 40*x^2) + 9*x^2 + 1350*x^5 + 28125*x^8) - exp(
3*x*exp(x))*(180*x^3 + 7500*x^6) - 90*x^2*exp(5*x*exp(x)) - exp(x*exp(x))*(exp(x)*(200*x^3 + 200*x^4) + 400*x^
2 + 90*x^4 + 4500*x^7 + 56250*x^10) + 3*x^3 + 2000*x^4 + 225*x^6 + 5625*x^9 + 46875*x^12 + exp(4*x*exp(x))*(9*
x + 1125*x^4))/(exp(4*x*exp(x))*(9*x^2 + 1125*x^5) - exp(3*x*exp(x))*(180*x^4 + 7500*x^7) - 90*x^3*exp(5*x*exp
(x)) + exp(2*x*exp(x))*(9*x^3 + 1350*x^6 + 28125*x^9) - exp(x*exp(x))*(90*x^5 + 4500*x^8 + 56250*x^11) + 3*x^4
+ 225*x^7 + 5625*x^10 + 46875*x^13 + 3*x*exp(6*x*exp(x))), x)
________________________________________________________________________________________
sympy [B] time = 0.48, size = 78, normalized size = 3.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((3*exp(exp(x)*x)**6-90*x**2*exp(exp(x)*x)**5+(1125*x**4+9*x)*exp(exp(x)*x)**4+(-7500*x**6-180*x**3)*
exp(exp(x)*x)**3+((40*x**2+40*x)*exp(x)+28125*x**8+1350*x**5+9*x**2)*exp(exp(x)*x)**2+((-200*x**4-200*x**3)*ex
p(x)-56250*x**10-4500*x**7-90*x**4-400*x**2)*exp(exp(x)*x)+46875*x**12+5625*x**9+225*x**6+2000*x**4+3*x**3+20*
x)/(3*x*exp(exp(x)*x)**6-90*x**3*exp(exp(x)*x)**5+(1125*x**5+9*x**2)*exp(exp(x)*x)**4+(-7500*x**7-180*x**4)*ex
p(exp(x)*x)**3+(28125*x**9+1350*x**6+9*x**3)*exp(exp(x)*x)**2+(-56250*x**11-4500*x**8-90*x**5)*exp(exp(x)*x)+4
6875*x**13+5625*x**10+225*x**7+3*x**4),x)
[Out]
log(x) - 10/(1875*x**8 + 150*x**5 - 60*x**2*exp(3*x*exp(x)) + 3*x**2 + (450*x**4 + 6*x)*exp(2*x*exp(x)) + (-15
00*x**6 - 60*x**3)*exp(x*exp(x)) + 3*exp(4*x*exp(x)))
________________________________________________________________________________________