3.17.32 34402592x872x2+1288x3256x4128x5+73x614x7+x8+(80+96x84x2+16x3)log(5)36002400x1040x2+1320x3256x4128x5+73x614x7+x8dx

Optimal. Leaf size=35 x2log(5)(3x)(514x(4xx2))

________________________________________________________________________________________

Rubi [B]  time = 18.04, antiderivative size = 1979, normalized size of antiderivative = 56.54, number of steps used = 20, number of rules used = 10, integrand size = 97, number of rulesintegrand size = 0.103, Rules used = {2074, 2101, 2081, 2079, 822, 800, 634, 618, 204, 628}

result too large to display

Warning: Unable to verify antiderivative.

[In]

Int[(3440 - 2592*x - 872*x^2 + 1288*x^3 - 256*x^4 - 128*x^5 + 73*x^6 - 14*x^7 + x^8 + (80 + 96*x - 84*x^2 + 16
*x^3)*Log[5])/(3600 - 2400*x - 1040*x^2 + 1320*x^3 - 256*x^4 - 128*x^5 + 73*x^6 - 14*x^7 + x^8),x]

[Out]

x - (230040*(1013623 - 31059*Sqrt[1065])*(2 - Log[5]))/(11*(264622680*2^(1/3) - 8108984*2^(1/3)*Sqrt[1065] - (
2632680 - 80776*Sqrt[1065])*(1013623 - 31059*Sqrt[1065])^(1/3) + (33077835 - 1013623*Sqrt[1065])*(20194 - 618*
Sqrt[1065])^(1/3) + 63701910*(103 - 3*Sqrt[1065])^(2/3) - 1948142*Sqrt[1065]*(103 - 3*Sqrt[1065])^(2/3))*(2^(1
/3)*(8*2^(1/3) + (103 - 3*Sqrt[1065])^(2/3)) - (103 - 3*Sqrt[1065])^(1/3)*(4 - 3*x))) - (4*(2 - Log[5]))/(11*(
3 - x)) - (18*2^(2/3)*(103 - 3*Sqrt[1065])^(5/3)*(1420 + (2^(1/3)*(1775 - 43*Sqrt[1065] + (355 - 7*Sqrt[1065])
*(206 - 6*Sqrt[1065])^(1/3))*(4 - 3*x))/(103 - 3*Sqrt[1065])^(2/3))*(2 - Log[5]))/(11*(329085 - 10097*Sqrt[106
5] - 4*(3195 - 103*Sqrt[1065])*(206 - 6*Sqrt[1065])^(1/3))*(4 - (206 - 6*Sqrt[1065])^(1/3) - (8*2^(2/3))/(103
- 3*Sqrt[1065])^(1/3) - 3*x)*((15*(45 + Sqrt[1065]))^(1/3)*(4 + (206 - 6*Sqrt[1065])^(1/3)) - 2*(8 + (206 - 6*
Sqrt[1065])^(1/3) + (8*2^(2/3))/(103 - 3*Sqrt[1065])^(1/3))*x + 6*x^2)) - (4*(2 - Log[5]))/(11*(20 - 4*x^2 + x
^3)) + (51120*(979149472182 - 30003654798*Sqrt[1065] - 4*(203636674 - 6239946*Sqrt[1065])^(1/3)*(101818337 - 3
119973*Sqrt[1065]) + (169616017219 - 5197469775*Sqrt[1065])*(206 - 6*Sqrt[1065])^(1/3))*Sqrt[6/(2^(2/3)*(10097
 - 309*Sqrt[1065]) + 64*2^(1/3)*(103 - 3*Sqrt[1065])^(2/3) - 16*(103 - 3*Sqrt[1065])^(4/3))]*ArcTan[(2^(1/3)*(
103 - 3*Sqrt[1065] + 8*(206 - 6*Sqrt[1065])^(1/3)) + 2*(103 - 3*Sqrt[1065])^(2/3)*(4 - 3*x))/Sqrt[6*(2^(2/3)*(
10097 - 309*Sqrt[1065]) + 64*2^(1/3)*(103 - 3*Sqrt[1065])^(2/3) - 16*(103 - 3*Sqrt[1065])^(4/3))]]*(2 - Log[5]
))/(11*(103 - 3*Sqrt[1065])*(329085 - 10097*Sqrt[1065] - 4*(3195 - 103*Sqrt[1065])*(206 - 6*Sqrt[1065])^(1/3))
*(192*2^(1/3) + 2^(2/3)*(103 - 3*Sqrt[1065])^(4/3) + (103 - 3*Sqrt[1065])^(2/3)*(24 + (10097 - 309*Sqrt[1065])
^(1/3)))^2) - (18*2^(5/6)*(2^(1/3)*(4739 - 143*Sqrt[1065]) + (193 - 5*Sqrt[1065])*(103 - 3*Sqrt[1065])^(2/3))*
Sqrt[3/(2^(2/3)*(10097 - 309*Sqrt[1065]) + 64*2^(1/3)*(103 - 3*Sqrt[1065])^(2/3) - 16*(103 - 3*Sqrt[1065])^(4/
3))]*ArcTan[(2^(1/3)*(103 - 3*Sqrt[1065] + 8*(206 - 6*Sqrt[1065])^(1/3)) + 2*(103 - 3*Sqrt[1065])^(2/3)*(4 - 3
*x))/Sqrt[6*(2^(2/3)*(10097 - 309*Sqrt[1065]) + 64*2^(1/3)*(103 - 3*Sqrt[1065])^(2/3) - 16*(103 - 3*Sqrt[1065]
)^(4/3))]]*(2 - Log[5]))/(11*(192*2^(1/3) + 2^(2/3)*(103 - 3*Sqrt[1065])^(4/3) + (103 - 3*Sqrt[1065])^(2/3)*(2
4 + (10097 - 309*Sqrt[1065])^(1/3)))) + (230040*(2^(2/3)*(101818337 - 3119973*Sqrt[1065]) + 8*(1013623 - 31059
*Sqrt[1065])*(103 - 3*Sqrt[1065])^(1/3) - 5*2^(1/3)*(1013623 - 31059*Sqrt[1065])*(103 - 3*Sqrt[1065])^(2/3))*(
2 - Log[5])*Log[2^(1/3)*(8*2^(1/3) + (103 - 3*Sqrt[1065])^(2/3)) - (103 - 3*Sqrt[1065])^(1/3)*(4 - 3*x)])/(11*
(10097 - 309*Sqrt[1065])^(1/3)*(329085 - 10097*Sqrt[1065] - 4*(3195 - 103*Sqrt[1065])*(206 - 6*Sqrt[1065])^(1/
3))*(192*2^(1/3) + 2^(2/3)*(103 - 3*Sqrt[1065])^(4/3) + (103 - 3*Sqrt[1065])^(2/3)*(24 + (10097 - 309*Sqrt[106
5])^(1/3)))^2) - (6*(2*(103 - 3*Sqrt[1065]))^(1/3)*(8*2^(1/3) - 5*2^(2/3)*(103 - 3*Sqrt[1065])^(1/3) + (103 -
3*Sqrt[1065])^(2/3))*(2 - Log[5])*Log[2^(1/3)*(8*2^(1/3) + (103 - 3*Sqrt[1065])^(2/3)) - (103 - 3*Sqrt[1065])^
(1/3)*(4 - 3*x)])/(11*(192*2^(1/3) + 2^(2/3)*(103 - 3*Sqrt[1065])^(4/3) + (103 - 3*Sqrt[1065])^(2/3)*(24 + (10
097 - 309*Sqrt[1065])^(1/3)))) - (115020*(101818337 - 3119973*Sqrt[1065])*(8*2^(1/3) - 5*2^(2/3)*(103 - 3*Sqrt
[1065])^(1/3) + (103 - 3*Sqrt[1065])^(2/3))*(2 - Log[5])*Log[2^(1/3)*(45 - Sqrt[1065])*(4 + (206 - 6*Sqrt[1065
])^(1/3)) - 103*2^(1/3)*x + 3*2^(1/3)*Sqrt[1065]*x - 8*2^(2/3)*(103 - 3*Sqrt[1065])^(1/3)*x - 8*(103 - 3*Sqrt[
1065])^(2/3)*x + 3*(103 - 3*Sqrt[1065])^(2/3)*x^2])/(11*(103 - 3*Sqrt[1065])^(1/3)*(33077835 - 1013623*Sqrt[10
65] - 4*(329085 - 10097*Sqrt[1065])*(206 - 6*Sqrt[1065])^(1/3))*(192*2^(1/3) + 2^(2/3)*(103 - 3*Sqrt[1065])^(4
/3) + (103 - 3*Sqrt[1065])^(2/3)*(24 + (10097 - 309*Sqrt[1065])^(1/3)))^2) - (3*(103 - 3*Sqrt[1065])^(2/3)*(10
 - (206 - 6*Sqrt[1065])^(1/3) - (8*2^(2/3))/(103 - 3*Sqrt[1065])^(1/3))*(2 - Log[5])*Log[2^(1/3)*(45 - Sqrt[10
65])*(4 + (206 - 6*Sqrt[1065])^(1/3)) - 103*2^(1/3)*x + 3*2^(1/3)*Sqrt[1065]*x - 8*2^(2/3)*(103 - 3*Sqrt[1065]
)^(1/3)*x - 8*(103 - 3*Sqrt[1065])^(2/3)*x + 3*(103 - 3*Sqrt[1065])^(2/3)*x^2])/(11*(192*2^(1/3) + 2^(2/3)*(10
3 - 3*Sqrt[1065])^(4/3) + (103 - 3*Sqrt[1065])^(2/3)*(24 + (10097 - 309*Sqrt[1065])^(1/3))))

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 800

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[Exp
andIntegrand[((d + e*x)^m*(f + g*x))/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 -
 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[m]

Rule 822

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x
)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
 IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 2074

Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /;  !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]

Rule 2079

Int[((e_.) + (f_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (d_.)*(x_)^3)^(p_), x_Symbol] :> With[{r = Rt[-9*a*d^2 + S
qrt[3]*d*Sqrt[4*b^3*d + 27*a^2*d^2], 3]}, Dist[1/d^(2*p), Int[(e + f*x)^m*Simp[(18^(1/3)*b*d)/(3*r) - r/18^(1/
3) + d*x, x]^p*Simp[(b*d)/3 + (12^(1/3)*b^2*d^2)/(3*r^2) + r^2/(3*12^(1/3)) - d*((2^(1/3)*b*d)/(3^(1/3)*r) - r
/18^(1/3))*x + d^2*x^2, x]^p, x], x]] /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[4*b^3 + 27*a^2*d, 0] && ILtQ[p, 0
]

Rule 2081

Int[(P3_)^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> With[{a = Coeff[P3, x, 0], b = Coeff[P3, x, 1], c = C
oeff[P3, x, 2], d = Coeff[P3, x, 3]}, Subst[Int[((3*d*e - c*f)/(3*d) + f*x)^m*Simp[(2*c^3 - 9*b*c*d + 27*a*d^2
)/(27*d^2) - ((c^2 - 3*b*d)*x)/(3*d) + d*x^3, x]^p, x], x, x + c/(3*d)] /; NeQ[c, 0]] /; FreeQ[{e, f, m, p}, x
] && PolyQ[P3, x, 3]

Rule 2101

Int[(Pm_)*(Qn_)^(p_), x_Symbol] :> With[{m = Expon[Pm, x], n = Expon[Qn, x]}, Simp[(Coeff[Pm, x, m]*Qn^(p + 1)
)/(n*(p + 1)*Coeff[Qn, x, n]), x] + Dist[1/(n*Coeff[Qn, x, n]), Int[ExpandToSum[n*Coeff[Qn, x, n]*Pm - Coeff[P
m, x, m]*D[Qn, x], x]*Qn^p, x], x] /; EqQ[m, n - 1]] /; FreeQ[p, x] && PolyQ[Pm, x] && PolyQ[Qn, x] && NeQ[p,
-1]

Rubi steps

integral=(1+4(2+log(5))11(3+x)24(2036x+3x2)(2+log(5))11(204x2+x3)24(2+x)(2+log(5))11(204x2+x3))dx=x4(2log(5))11(3x)+111(4(2log(5)))2036x+3x2(204x2+x3)2dx+111(4(2log(5)))2+x204x2+x3dx=x4(2log(5))11(3x)4(2log(5))11(204x2+x3)+133(4(2log(5)))6084x(204x2+x3)2dx+111(4(2log(5)))Subst(103+x4122716x3+x3dx,x,43+x)=x4(2log(5))11(3x)4(2log(5))11(204x2+x3)+133(4(2log(5)))Subst(17284x(4122716x3+x3)2dx,x,43+x)+111(4(2log(5)))Subst(103+x(132103310653(823+(10331065)2/3)+x)(19(16+(20661065)2/3+12823(10331065)2/3)13(206610653+8 22/3103310653)x+x2)dx,x,43+x)=x4(2log(5))11(3x)4(2log(5))11(204x2+x3)+133(4(2log(5)))Subst(17284x(132103310653(823+(10331065)2/3)+x)2(19(16+(20661065)2/3+12823(10331065)2/3)13(206610653+8 22/3103310653)x+x2)2dx,x,43+x)+111(4(2log(5)))Subst((9(10331065)2/3(822/3+1010331065323(10331065)2/3)2(19223+22/3(10331065)4/3+(10331065)2/3(24+1009730910653))(8 22/3+23(10331065)2/3+3103310653x)+9(10331065)2/3(423(547151065)16(10331065)2/3+22/3103310653(26331065)+3(8 22/310331065310(10331065)2/3+23(10331065))x)2(19223+22/3(10331065)4/3+(10331065)2/3(24+1009730910653))(1282316(10331065)2/3+22/3(10331065)4/3323(10331065+8206610653)x+9(10331065)2/3x2))dx,x,43+x)=Rest of rules removed due to large latex content

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 36, normalized size = 1.03 x+4(17182+229489log(5)119040log(25))8591(60+20x+12x27x3+x4)

Antiderivative was successfully verified.

[In]

Integrate[(3440 - 2592*x - 872*x^2 + 1288*x^3 - 256*x^4 - 128*x^5 + 73*x^6 - 14*x^7 + x^8 + (80 + 96*x - 84*x^
2 + 16*x^3)*Log[5])/(3600 - 2400*x - 1040*x^2 + 1320*x^3 - 256*x^4 - 128*x^5 + 73*x^6 - 14*x^7 + x^8),x]

[Out]

x + (4*(17182 + 229489*Log[5] - 119040*Log[25]))/(8591*(-60 + 20*x + 12*x^2 - 7*x^3 + x^4))

________________________________________________________________________________________

fricas [A]  time = 0.81, size = 48, normalized size = 1.37 x57x4+12x3+20x260x4log(5)+8x47x3+12x2+20x60

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((16*x^3-84*x^2+96*x+80)*log(5)+x^8-14*x^7+73*x^6-128*x^5-256*x^4+1288*x^3-872*x^2-2592*x+3440)/(x^8
-14*x^7+73*x^6-128*x^5-256*x^4+1320*x^3-1040*x^2-2400*x+3600),x, algorithm="fricas")

[Out]

(x^5 - 7*x^4 + 12*x^3 + 20*x^2 - 60*x - 4*log(5) + 8)/(x^4 - 7*x^3 + 12*x^2 + 20*x - 60)

________________________________________________________________________________________

giac [A]  time = 0.21, size = 28, normalized size = 0.80 x4(log(5)2)x47x3+12x2+20x60

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((16*x^3-84*x^2+96*x+80)*log(5)+x^8-14*x^7+73*x^6-128*x^5-256*x^4+1288*x^3-872*x^2-2592*x+3440)/(x^8
-14*x^7+73*x^6-128*x^5-256*x^4+1320*x^3-1040*x^2-2400*x+3600),x, algorithm="giac")

[Out]

x - 4*(log(5) - 2)/(x^4 - 7*x^3 + 12*x^2 + 20*x - 60)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 44, normalized size = 1.26




method result size



norman x541237x3+104x2+80x4ln(5)x47x3+12x2+20x60 44
gosper x5+37x3104x2+4ln(5)80x+412x47x3+12x2+20x60 47
risch x4ln(5)x47x3+12x2+20x60+8x47x3+12x2+20x60 49
default x4ln(5)11811x34((2ln(5))x2+(ln(5)2)x6+3ln(5))11(x34x2+20) 52



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((16*x^3-84*x^2+96*x+80)*ln(5)+x^8-14*x^7+73*x^6-128*x^5-256*x^4+1288*x^3-872*x^2-2592*x+3440)/(x^8-14*x^7
+73*x^6-128*x^5-256*x^4+1320*x^3-1040*x^2-2400*x+3600),x,method=_RETURNVERBOSE)

[Out]

(x^5-412-37*x^3+104*x^2+80*x-4*ln(5))/(x^4-7*x^3+12*x^2+20*x-60)

________________________________________________________________________________________

maxima [A]  time = 0.65, size = 28, normalized size = 0.80 x4(log(5)2)x47x3+12x2+20x60

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((16*x^3-84*x^2+96*x+80)*log(5)+x^8-14*x^7+73*x^6-128*x^5-256*x^4+1288*x^3-872*x^2-2592*x+3440)/(x^8
-14*x^7+73*x^6-128*x^5-256*x^4+1320*x^3-1040*x^2-2400*x+3600),x, algorithm="maxima")

[Out]

x - 4*(log(5) - 2)/(x^4 - 7*x^3 + 12*x^2 + 20*x - 60)

________________________________________________________________________________________

mupad [B]  time = 0.13, size = 28, normalized size = 0.80 xln(625)8x47x3+12x2+20x60

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2592*x - log(5)*(96*x - 84*x^2 + 16*x^3 + 80) + 872*x^2 - 1288*x^3 + 256*x^4 + 128*x^5 - 73*x^6 + 14*x^7
- x^8 - 3440)/(2400*x + 1040*x^2 - 1320*x^3 + 256*x^4 + 128*x^5 - 73*x^6 + 14*x^7 - x^8 - 3600),x)

[Out]

x - (log(625) - 8)/(20*x + 12*x^2 - 7*x^3 + x^4 - 60)

________________________________________________________________________________________

sympy [A]  time = 1.20, size = 26, normalized size = 0.74 x+84log(5)x47x3+12x2+20x60

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((16*x**3-84*x**2+96*x+80)*ln(5)+x**8-14*x**7+73*x**6-128*x**5-256*x**4+1288*x**3-872*x**2-2592*x+34
40)/(x**8-14*x**7+73*x**6-128*x**5-256*x**4+1320*x**3-1040*x**2-2400*x+3600),x)

[Out]

x + (8 - 4*log(5))/(x**4 - 7*x**3 + 12*x**2 + 20*x - 60)

________________________________________________________________________________________