3.17.33 e12+4x(5+10x)+e6+2x(10x+10x2)x4+e6+2x(18x22x32x4)+e12+4x(8118x17x2+2x3+x4)dx

Optimal. Leaf size=25 59xx2+e62xx2

________________________________________________________________________________________

Rubi [F]  time = 9.51, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e12+4x(5+10x)+e6+2x(10x+10x2)x4+e6+2x(18x22x32x4)+e12+4x(8118x17x2+2x3+x4)dx

Verification is not applicable to the result.

[In]

Int[(E^(12 + 4*x)*(5 + 10*x) + E^(6 + 2*x)*(-10*x + 10*x^2))/(x^4 + E^(6 + 2*x)*(18*x^2 - 2*x^3 - 2*x^4) + E^(
12 + 4*x)*(81 - 18*x - 17*x^2 + 2*x^3 + x^4)),x]

[Out]

-5*Defer[Int][E^(6 + 2*x)/(x^2 - E^(6 + 2*x)*(-9 + x + x^2))^2, x] + (90*Defer[Int][E^(6 + 2*x)/((-1 + Sqrt[37
] - 2*x)*(x^2 - E^(6 + 2*x)*(-9 + x + x^2))^2), x])/Sqrt[37] + 10*Defer[Int][(E^(6 + 2*x)*x^2)/(x^2 - E^(6 + 2
*x)*(-9 + x + x^2))^2, x] + (95*(37 - Sqrt[37])*Defer[Int][E^(6 + 2*x)/((1 - Sqrt[37] + 2*x)*(x^2 - E^(6 + 2*x
)*(-9 + x + x^2))^2), x])/37 + (90*Defer[Int][E^(6 + 2*x)/((1 + Sqrt[37] + 2*x)*(x^2 - E^(6 + 2*x)*(-9 + x + x
^2))^2), x])/Sqrt[37] + (95*(37 + Sqrt[37])*Defer[Int][E^(6 + 2*x)/((1 + Sqrt[37] + 2*x)*(x^2 - E^(6 + 2*x)*(-
9 + x + x^2))^2), x])/37 + (10*(37 + Sqrt[37])*Defer[Int][E^(6 + 2*x)/((-1 - Sqrt[37] - 2*x)*(x^2 - E^(6 + 2*x
)*(-9 + x + x^2))), x])/37 + (10*Defer[Int][E^(6 + 2*x)/((-1 + Sqrt[37] - 2*x)*(x^2 - E^(6 + 2*x)*(-9 + x + x^
2))), x])/Sqrt[37] + (10*(37 - Sqrt[37])*Defer[Int][E^(6 + 2*x)/((-1 + Sqrt[37] - 2*x)*(x^2 - E^(6 + 2*x)*(-9
+ x + x^2))), x])/37 + (10*Defer[Int][E^(6 + 2*x)/((1 + Sqrt[37] + 2*x)*(x^2 - E^(6 + 2*x)*(-9 + x + x^2))), x
])/Sqrt[37]

Rubi steps

integral=5e6+2x(2(1+x)x+e6+2x(1+2x))(x2e6+2x(9+x+x2))2dx=5e6+2x(2(1+x)x+e6+2x(1+2x))(x2e6+2x(9+x+x2))2dx=5(e6+2x(1+2x)(9+x+x2)(9e6+2x+e6+2xxx2+e6+2xx2)+e6+2xx(1819x+2x2+2x3)(9+x+x2)(9e6+2x+e6+2xxx2+e6+2xx2)2)dx=5e6+2x(1+2x)(9+x+x2)(9e6+2x+e6+2xxx2+e6+2xx2)dx+5e6+2xx(1819x+2x2+2x3)(9+x+x2)(9e6+2x+e6+2xxx2+e6+2xx2)2dx=5e6+2x(1+2x)(9xx2)(x2e6+2x(9+x+x2))dx+5(e6+2x(9e6+2x+e6+2xxx2+e6+2xx2)2+2e6+2xx2(9e6+2x+e6+2xxx2+e6+2xx2)2+e6+2x(9+19x)(9+x+x2)(9e6+2x+e6+2xxx2+e6+2xx2)2)dx=(5e6+2x(9e6+2x+e6+2xxx2+e6+2xx2)2dx)+5e6+2x(9+19x)(9+x+x2)(9e6+2x+e6+2xxx2+e6+2xx2)2dx+5(e6+2x(9+x+x2)(9e6+2x+e6+2xxx2+e6+2xx2)+2e6+2xx(9+x+x2)(9e6+2x+e6+2xxx2+e6+2xx2))dx+10e6+2xx2(9e6+2x+e6+2xxx2+e6+2xx2)2dx=5e6+2x(9+x+x2)(9e6+2x+e6+2xxx2+e6+2xx2)dx5e6+2x(x2e6+2x(9+x+x2))2dx+5(9e6+2x(9+x+x2)(9e6+2x+e6+2xxx2+e6+2xx2)2+19e6+2xx(9+x+x2)(9e6+2x+e6+2xxx2+e6+2xx2)2)dx+10e6+2xx(9+x+x2)(9e6+2x+e6+2xxx2+e6+2xx2)dx+10e6+2xx2(x2e6+2x(9+x+x2))2dx=(5e6+2x(x2e6+2x(9+x+x2))2dx)+5e6+2x(9xx2)(x2e6+2x(9+x+x2))dx+10e6+2xx2(x2e6+2x(9+x+x2))2dx+10e6+2xx(9xx2)(x2e6+2x(9+x+x2))dx45e6+2x(9+x+x2)(9e6+2x+e6+2xxx2+e6+2xx2)2dx+95e6+2xx(9+x+x2)(9e6+2x+e6+2xxx2+e6+2xx2)2dx=(5e6+2x(x2e6+2x(9+x+x2))2dx)+5(2e6+2x37(1+372x)(x2e6+2x(9+x+x2))+2e6+2x37(1+37+2x)(x2e6+2x(9+x+x2)))dx+10e6+2xx2(x2e6+2x(9+x+x2))2dx+10((1+137)e6+2x(1372x)(x2e6+2x(9+x+x2))+(1137)e6+2x(1+372x)(x2e6+2x(9+x+x2)))dx45e6+2x(9+x+x2)(x2e6+2x(9+x+x2))2dx+95e6+2xx(9+x+x2)(x2e6+2x(9+x+x2))2dx=(5e6+2x(x2e6+2x(9+x+x2))2dx)+10e6+2xx2(x2e6+2x(9+x+x2))2dx45(2e6+2x37(1+372x)(x2e6+2x(9+x+x2))22e6+2x37(1+37+2x)(x2e6+2x(9+x+x2))2)dx+95((1137)e6+2x(137+2x)(x2e6+2x(9+x+x2))2+(1+137)e6+2x(1+37+2x)(x2e6+2x(9+x+x2))2)dx+10e6+2x(1+372x)(x2e6+2x(9+x+x2))dx37+10e6+2x(1+37+2x)(x2e6+2x(9+x+x2))dx37+137(10(3737))e6+2x(1+372x)(x2e6+2x(9+x+x2))dx+137(10(37+37))e6+2x(1372x)(x2e6+2x(9+x+x2))dx=(5e6+2x(x2e6+2x(9+x+x2))2dx)+10e6+2xx2(x2e6+2x(9+x+x2))2dx+10e6+2x(1+372x)(x2e6+2x(9+x+x2))dx37+10e6+2x(1+37+2x)(x2e6+2x(9+x+x2))dx37+90e6+2x(1+372x)(x2e6+2x(9+x+x2))2dx37+90e6+2x(1+37+2x)(x2e6+2x(9+x+x2))2dx37+137(10(3737))e6+2x(1+372x)(x2e6+2x(9+x+x2))dx+137(95(3737))e6+2x(137+2x)(x2e6+2x(9+x+x2))2dx+137(10(37+37))e6+2x(1372x)(x2e6+2x(9+x+x2))dx+137(95(37+37))e6+2x(1+37+2x)(x2e6+2x(9+x+x2))2dx

________________________________________________________________________________________

Mathematica [A]  time = 1.62, size = 31, normalized size = 1.24 5e6+2xx2+e6+2x(9+x+x2)

Antiderivative was successfully verified.

[In]

Integrate[(E^(12 + 4*x)*(5 + 10*x) + E^(6 + 2*x)*(-10*x + 10*x^2))/(x^4 + E^(6 + 2*x)*(18*x^2 - 2*x^3 - 2*x^4)
 + E^(12 + 4*x)*(81 - 18*x - 17*x^2 + 2*x^3 + x^4)),x]

[Out]

(-5*E^(6 + 2*x))/(-x^2 + E^(6 + 2*x)*(-9 + x + x^2))

________________________________________________________________________________________

fricas [A]  time = 0.84, size = 28, normalized size = 1.12 5e(2x+6)x2(x2+x9)e(2x+6)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((10*x+5)*exp(3)^4*exp(x)^4+(10*x^2-10*x)*exp(3)^2*exp(x)^2)/((x^4+2*x^3-17*x^2-18*x+81)*exp(3)^4*ex
p(x)^4+(-2*x^4-2*x^3+18*x^2)*exp(3)^2*exp(x)^2+x^4),x, algorithm="fricas")

[Out]

5*e^(2*x + 6)/(x^2 - (x^2 + x - 9)*e^(2*x + 6))

________________________________________________________________________________________

giac [A]  time = 0.53, size = 42, normalized size = 1.68 5e(2x+6)x2e(2x+6)x2+xe(2x+6)9e(2x+6)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((10*x+5)*exp(3)^4*exp(x)^4+(10*x^2-10*x)*exp(3)^2*exp(x)^2)/((x^4+2*x^3-17*x^2-18*x+81)*exp(3)^4*ex
p(x)^4+(-2*x^4-2*x^3+18*x^2)*exp(3)^2*exp(x)^2+x^4),x, algorithm="giac")

[Out]

-5*e^(2*x + 6)/(x^2*e^(2*x + 6) - x^2 + x*e^(2*x + 6) - 9*e^(2*x + 6))

________________________________________________________________________________________

maple [A]  time = 0.35, size = 51, normalized size = 2.04




method result size



norman 5e6e2xx2e6e2x+e6e2xx9e6e2xx2 51
risch 5x2+x95x2(x2+x9)(x2e2x+6+xe2x+69e2x+6x2) 59



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((10*x+5)*exp(3)^4*exp(x)^4+(10*x^2-10*x)*exp(3)^2*exp(x)^2)/((x^4+2*x^3-17*x^2-18*x+81)*exp(3)^4*exp(x)^4
+(-2*x^4-2*x^3+18*x^2)*exp(3)^2*exp(x)^2+x^4),x,method=_RETURNVERBOSE)

[Out]

-5*exp(3)^2*exp(x)^2/(x^2*exp(3)^2*exp(x)^2+exp(3)^2*exp(x)^2*x-9*exp(3)^2*exp(x)^2-x^2)

________________________________________________________________________________________

maxima [A]  time = 0.45, size = 35, normalized size = 1.40 5e(2x+6)x2(x2e6+xe69e6)e(2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((10*x+5)*exp(3)^4*exp(x)^4+(10*x^2-10*x)*exp(3)^2*exp(x)^2)/((x^4+2*x^3-17*x^2-18*x+81)*exp(3)^4*ex
p(x)^4+(-2*x^4-2*x^3+18*x^2)*exp(3)^2*exp(x)^2+x^4),x, algorithm="maxima")

[Out]

5*e^(2*x + 6)/(x^2 - (x^2*e^6 + x*e^6 - 9*e^6)*e^(2*x))

________________________________________________________________________________________

mupad [B]  time = 0.19, size = 57, normalized size = 2.28 5x(e2x+6x+xe2x+6)9(9e2x+6xe2x+6x2e2x+6+x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(4*x)*exp(12)*(10*x + 5) - exp(2*x)*exp(6)*(10*x - 10*x^2))/(x^4 - exp(2*x)*exp(6)*(2*x^3 - 18*x^2 + 2
*x^4) + exp(4*x)*exp(12)*(2*x^3 - 17*x^2 - 18*x + x^4 + 81)),x)

[Out]

(5*x*(exp(2*x + 6) - x + x*exp(2*x + 6)))/(9*(9*exp(2*x + 6) - x*exp(2*x + 6) - x^2*exp(2*x + 6) + x^2))

________________________________________________________________________________________

sympy [B]  time = 0.34, size = 66, normalized size = 2.64 5x2x4x3+9x2+(x4e6+2x3e617x2e618xe6+81e6)e2x5x2+x9

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((10*x+5)*exp(3)**4*exp(x)**4+(10*x**2-10*x)*exp(3)**2*exp(x)**2)/((x**4+2*x**3-17*x**2-18*x+81)*exp
(3)**4*exp(x)**4+(-2*x**4-2*x**3+18*x**2)*exp(3)**2*exp(x)**2+x**4),x)

[Out]

-5*x**2/(-x**4 - x**3 + 9*x**2 + (x**4*exp(6) + 2*x**3*exp(6) - 17*x**2*exp(6) - 18*x*exp(6) + 81*exp(6))*exp(
2*x)) - 5/(x**2 + x - 9)

________________________________________________________________________________________