3.17.33
Optimal. Leaf size=25
________________________________________________________________________________________
Rubi [F] time = 9.51, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^(12 + 4*x)*(5 + 10*x) + E^(6 + 2*x)*(-10*x + 10*x^2))/(x^4 + E^(6 + 2*x)*(18*x^2 - 2*x^3 - 2*x^4) + E^(
12 + 4*x)*(81 - 18*x - 17*x^2 + 2*x^3 + x^4)),x]
[Out]
-5*Defer[Int][E^(6 + 2*x)/(x^2 - E^(6 + 2*x)*(-9 + x + x^2))^2, x] + (90*Defer[Int][E^(6 + 2*x)/((-1 + Sqrt[37
] - 2*x)*(x^2 - E^(6 + 2*x)*(-9 + x + x^2))^2), x])/Sqrt[37] + 10*Defer[Int][(E^(6 + 2*x)*x^2)/(x^2 - E^(6 + 2
*x)*(-9 + x + x^2))^2, x] + (95*(37 - Sqrt[37])*Defer[Int][E^(6 + 2*x)/((1 - Sqrt[37] + 2*x)*(x^2 - E^(6 + 2*x
)*(-9 + x + x^2))^2), x])/37 + (90*Defer[Int][E^(6 + 2*x)/((1 + Sqrt[37] + 2*x)*(x^2 - E^(6 + 2*x)*(-9 + x + x
^2))^2), x])/Sqrt[37] + (95*(37 + Sqrt[37])*Defer[Int][E^(6 + 2*x)/((1 + Sqrt[37] + 2*x)*(x^2 - E^(6 + 2*x)*(-
9 + x + x^2))^2), x])/37 + (10*(37 + Sqrt[37])*Defer[Int][E^(6 + 2*x)/((-1 - Sqrt[37] - 2*x)*(x^2 - E^(6 + 2*x
)*(-9 + x + x^2))), x])/37 + (10*Defer[Int][E^(6 + 2*x)/((-1 + Sqrt[37] - 2*x)*(x^2 - E^(6 + 2*x)*(-9 + x + x^
2))), x])/Sqrt[37] + (10*(37 - Sqrt[37])*Defer[Int][E^(6 + 2*x)/((-1 + Sqrt[37] - 2*x)*(x^2 - E^(6 + 2*x)*(-9
+ x + x^2))), x])/37 + (10*Defer[Int][E^(6 + 2*x)/((1 + Sqrt[37] + 2*x)*(x^2 - E^(6 + 2*x)*(-9 + x + x^2))), x
])/Sqrt[37]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 1.62, size = 31, normalized size = 1.24
Antiderivative was successfully verified.
[In]
Integrate[(E^(12 + 4*x)*(5 + 10*x) + E^(6 + 2*x)*(-10*x + 10*x^2))/(x^4 + E^(6 + 2*x)*(18*x^2 - 2*x^3 - 2*x^4)
+ E^(12 + 4*x)*(81 - 18*x - 17*x^2 + 2*x^3 + x^4)),x]
[Out]
(-5*E^(6 + 2*x))/(-x^2 + E^(6 + 2*x)*(-9 + x + x^2))
________________________________________________________________________________________
fricas [A] time = 0.84, size = 28, normalized size = 1.12
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((10*x+5)*exp(3)^4*exp(x)^4+(10*x^2-10*x)*exp(3)^2*exp(x)^2)/((x^4+2*x^3-17*x^2-18*x+81)*exp(3)^4*ex
p(x)^4+(-2*x^4-2*x^3+18*x^2)*exp(3)^2*exp(x)^2+x^4),x, algorithm="fricas")
[Out]
5*e^(2*x + 6)/(x^2 - (x^2 + x - 9)*e^(2*x + 6))
________________________________________________________________________________________
giac [A] time = 0.53, size = 42, normalized size = 1.68
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((10*x+5)*exp(3)^4*exp(x)^4+(10*x^2-10*x)*exp(3)^2*exp(x)^2)/((x^4+2*x^3-17*x^2-18*x+81)*exp(3)^4*ex
p(x)^4+(-2*x^4-2*x^3+18*x^2)*exp(3)^2*exp(x)^2+x^4),x, algorithm="giac")
[Out]
-5*e^(2*x + 6)/(x^2*e^(2*x + 6) - x^2 + x*e^(2*x + 6) - 9*e^(2*x + 6))
________________________________________________________________________________________
maple [A] time = 0.35, size = 51, normalized size = 2.04
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((10*x+5)*exp(3)^4*exp(x)^4+(10*x^2-10*x)*exp(3)^2*exp(x)^2)/((x^4+2*x^3-17*x^2-18*x+81)*exp(3)^4*exp(x)^4
+(-2*x^4-2*x^3+18*x^2)*exp(3)^2*exp(x)^2+x^4),x,method=_RETURNVERBOSE)
[Out]
-5*exp(3)^2*exp(x)^2/(x^2*exp(3)^2*exp(x)^2+exp(3)^2*exp(x)^2*x-9*exp(3)^2*exp(x)^2-x^2)
________________________________________________________________________________________
maxima [A] time = 0.45, size = 35, normalized size = 1.40
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((10*x+5)*exp(3)^4*exp(x)^4+(10*x^2-10*x)*exp(3)^2*exp(x)^2)/((x^4+2*x^3-17*x^2-18*x+81)*exp(3)^4*ex
p(x)^4+(-2*x^4-2*x^3+18*x^2)*exp(3)^2*exp(x)^2+x^4),x, algorithm="maxima")
[Out]
5*e^(2*x + 6)/(x^2 - (x^2*e^6 + x*e^6 - 9*e^6)*e^(2*x))
________________________________________________________________________________________
mupad [B] time = 0.19, size = 57, normalized size = 2.28
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(4*x)*exp(12)*(10*x + 5) - exp(2*x)*exp(6)*(10*x - 10*x^2))/(x^4 - exp(2*x)*exp(6)*(2*x^3 - 18*x^2 + 2
*x^4) + exp(4*x)*exp(12)*(2*x^3 - 17*x^2 - 18*x + x^4 + 81)),x)
[Out]
(5*x*(exp(2*x + 6) - x + x*exp(2*x + 6)))/(9*(9*exp(2*x + 6) - x*exp(2*x + 6) - x^2*exp(2*x + 6) + x^2))
________________________________________________________________________________________
sympy [B] time = 0.34, size = 66, normalized size = 2.64
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((10*x+5)*exp(3)**4*exp(x)**4+(10*x**2-10*x)*exp(3)**2*exp(x)**2)/((x**4+2*x**3-17*x**2-18*x+81)*exp
(3)**4*exp(x)**4+(-2*x**4-2*x**3+18*x**2)*exp(3)**2*exp(x)**2+x**4),x)
[Out]
-5*x**2/(-x**4 - x**3 + 9*x**2 + (x**4*exp(6) + 2*x**3*exp(6) - 17*x**2*exp(6) - 18*x*exp(6) + 81*exp(6))*exp(
2*x)) - 5/(x**2 + x - 9)
________________________________________________________________________________________