3.17.34
Optimal. Leaf size=20
________________________________________________________________________________________
Rubi [A] time = 0.35, antiderivative size = 20, normalized size of antiderivative = 1.00,
number of steps used = 4, number of rules used = 3, integrand size = 90, = 0.033, Rules used =
{12, 6688, 6686}
Antiderivative was successfully verified.
[In]
Int[(160*E^(1 + (5*E)/(4*x*Log[3])))/(-125*x^2*Log[3] + 75*E^((5*E)/(4*x*Log[3]))*x^2*Log[3] - 15*E^((5*E)/(2*
x*Log[3]))*x^2*Log[3] + E^((15*E)/(4*x*Log[3]))*x^2*Log[3]),x]
[Out]
64/(5 - E^((5*E)/(x*Log[81])))^2
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 6686
Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /; !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 18, normalized size = 0.90
Antiderivative was successfully verified.
[In]
Integrate[(160*E^(1 + (5*E)/(4*x*Log[3])))/(-125*x^2*Log[3] + 75*E^((5*E)/(4*x*Log[3]))*x^2*Log[3] - 15*E^((5*
E)/(2*x*Log[3]))*x^2*Log[3] + E^((15*E)/(4*x*Log[3]))*x^2*Log[3]),x]
[Out]
64/(-5 + E^((5*E)/(x*Log[81])))^2
________________________________________________________________________________________
fricas [B] time = 0.77, size = 85, normalized size = 4.25
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(32*exp(log(5)+1)*exp(1/4*exp(log(5)+1)/x/log(3))/(x^2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))^3-15*x^
2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))^2+75*x^2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))-125*x^2*log(3)),x, al
gorithm="fricas")
[Out]
-64*e^(2*log(5) + 2)/(10*e^(1/4*(4*x*log(5)*log(3) + 4*x*log(3) + e^(log(5) + 1))/(x*log(3)) + log(5) + 1) - e
^(1/2*(4*x*log(5)*log(3) + 4*x*log(3) + e^(log(5) + 1))/(x*log(3))) - 25*e^(2*log(5) + 2))
________________________________________________________________________________________
giac [A] time = 0.55, size = 41, normalized size = 2.05
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(32*exp(log(5)+1)*exp(1/4*exp(log(5)+1)/x/log(3))/(x^2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))^3-15*x^
2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))^2+75*x^2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))-125*x^2*log(3)),x, al
gorithm="giac")
[Out]
64*e/(25*e + e^(5/2*e/(x*log(3)) + 1) - 10*e^(5/4*e/(x*log(3)) + 1))
________________________________________________________________________________________
maple [A] time = 0.18, size = 19, normalized size = 0.95
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
derivativedivides |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(32*exp(ln(5)+1)*exp(1/4*exp(ln(5)+1)/x/ln(3))/(x^2*ln(3)*exp(1/4*exp(ln(5)+1)/x/ln(3))^3-15*x^2*ln(3)*exp(
1/4*exp(ln(5)+1)/x/ln(3))^2+75*x^2*ln(3)*exp(1/4*exp(ln(5)+1)/x/ln(3))-125*x^2*ln(3)),x,method=_RETURNVERBOSE)
[Out]
64/(exp(5/4*exp(1)/x/ln(3))-5)^2
________________________________________________________________________________________
maxima [B] time = 0.54, size = 59, normalized size = 2.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(32*exp(log(5)+1)*exp(1/4*exp(log(5)+1)/x/log(3))/(x^2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))^3-15*x^
2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))^2+75*x^2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))-125*x^2*log(3)),x, al
gorithm="maxima")
[Out]
-64/25*(e^(5/2*e/(x*log(3))) - 10*e^(5/4*e/(x*log(3))))/(e^(5/2*e/(x*log(3))) - 10*e^(5/4*e/(x*log(3))) + 25)
________________________________________________________________________________________
mupad [B] time = 1.28, size = 18, normalized size = 0.90
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(32*exp(log(5) + 1)*exp(exp(log(5) + 1)/(4*x*log(3))))/(125*x^2*log(3) + 15*x^2*exp(exp(log(5) + 1)/(2*x*
log(3)))*log(3) - 75*x^2*exp(exp(log(5) + 1)/(4*x*log(3)))*log(3) - x^2*exp((3*exp(log(5) + 1))/(4*x*log(3)))*
log(3)),x)
[Out]
64/(exp((5*exp(1))/(4*x*log(3))) - 5)^2
________________________________________________________________________________________
sympy [A] time = 0.14, size = 31, normalized size = 1.55
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(32*exp(ln(5)+1)*exp(1/4*exp(ln(5)+1)/x/ln(3))/(x**2*ln(3)*exp(1/4*exp(ln(5)+1)/x/ln(3))**3-15*x**2*l
n(3)*exp(1/4*exp(ln(5)+1)/x/ln(3))**2+75*x**2*ln(3)*exp(1/4*exp(ln(5)+1)/x/ln(3))-125*x**2*ln(3)),x)
[Out]
64/(-10*exp(5*E/(4*x*log(3))) + exp(5*E/(2*x*log(3))) + 25)
________________________________________________________________________________________