3.17.34 160e1+5e4xlog(3)125x2log(3)+75e5e4xlog(3)x2log(3)15e5e2xlog(3)x2log(3)+e15e4xlog(3)x2log(3)dx

Optimal. Leaf size=20 64(5+e5e4xlog(3))2

________________________________________________________________________________________

Rubi [A]  time = 0.35, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 90, number of rulesintegrand size = 0.033, Rules used = {12, 6688, 6686} 64(5e5exlog(81))2

Antiderivative was successfully verified.

[In]

Int[(160*E^(1 + (5*E)/(4*x*Log[3])))/(-125*x^2*Log[3] + 75*E^((5*E)/(4*x*Log[3]))*x^2*Log[3] - 15*E^((5*E)/(2*
x*Log[3]))*x^2*Log[3] + E^((15*E)/(4*x*Log[3]))*x^2*Log[3]),x]

[Out]

64/(5 - E^((5*E)/(x*Log[81])))^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6686

Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /;  !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

integral=160e1+5e4xlog(3)125x2log(3)+75e5e4xlog(3)x2log(3)15e5e2xlog(3)x2log(3)+e15e4xlog(3)x2log(3)dx=160e1+5exlog(81)(5+e5exlog(81))3x2log(3)dx=160e1+5exlog(81)(5+e5exlog(81))3x2dxlog(3)=64(5e5exlog(81))2

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 18, normalized size = 0.90 64(5+e5exlog(81))2

Antiderivative was successfully verified.

[In]

Integrate[(160*E^(1 + (5*E)/(4*x*Log[3])))/(-125*x^2*Log[3] + 75*E^((5*E)/(4*x*Log[3]))*x^2*Log[3] - 15*E^((5*
E)/(2*x*Log[3]))*x^2*Log[3] + E^((15*E)/(4*x*Log[3]))*x^2*Log[3]),x]

[Out]

64/(-5 + E^((5*E)/(x*Log[81])))^2

________________________________________________________________________________________

fricas [B]  time = 0.77, size = 85, normalized size = 4.25 64e(2log(5)+2)10e(4xlog(5)log(3)+4xlog(3)+e(log(5)+1)4xlog(3)+log(5)+1)e(4xlog(5)log(3)+4xlog(3)+e(log(5)+1)2xlog(3))25e(2log(5)+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(32*exp(log(5)+1)*exp(1/4*exp(log(5)+1)/x/log(3))/(x^2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))^3-15*x^
2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))^2+75*x^2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))-125*x^2*log(3)),x, al
gorithm="fricas")

[Out]

-64*e^(2*log(5) + 2)/(10*e^(1/4*(4*x*log(5)*log(3) + 4*x*log(3) + e^(log(5) + 1))/(x*log(3)) + log(5) + 1) - e
^(1/2*(4*x*log(5)*log(3) + 4*x*log(3) + e^(log(5) + 1))/(x*log(3))) - 25*e^(2*log(5) + 2))

________________________________________________________________________________________

giac [A]  time = 0.55, size = 41, normalized size = 2.05 64e25e+e(5e2xlog(3)+1)10e(5e4xlog(3)+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(32*exp(log(5)+1)*exp(1/4*exp(log(5)+1)/x/log(3))/(x^2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))^3-15*x^
2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))^2+75*x^2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))-125*x^2*log(3)),x, al
gorithm="giac")

[Out]

64*e/(25*e + e^(5/2*e/(x*log(3)) + 1) - 10*e^(5/4*e/(x*log(3)) + 1))

________________________________________________________________________________________

maple [A]  time = 0.18, size = 19, normalized size = 0.95




method result size



risch 64(e5e4xln(3)5)2 19
norman 64(eeln(5)+14xln(3)5)2 22
derivativedivides 64e2e2(eeln(5)+14xln(3)5)2 33
default 64e2e2(eeln(5)+14xln(3)5)2 33



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(32*exp(ln(5)+1)*exp(1/4*exp(ln(5)+1)/x/ln(3))/(x^2*ln(3)*exp(1/4*exp(ln(5)+1)/x/ln(3))^3-15*x^2*ln(3)*exp(
1/4*exp(ln(5)+1)/x/ln(3))^2+75*x^2*ln(3)*exp(1/4*exp(ln(5)+1)/x/ln(3))-125*x^2*ln(3)),x,method=_RETURNVERBOSE)

[Out]

64/(exp(5/4*exp(1)/x/ln(3))-5)^2

________________________________________________________________________________________

maxima [B]  time = 0.54, size = 59, normalized size = 2.95 64(e(5e2xlog(3))10e(5e4xlog(3)))25(e(5e2xlog(3))10e(5e4xlog(3))+25)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(32*exp(log(5)+1)*exp(1/4*exp(log(5)+1)/x/log(3))/(x^2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))^3-15*x^
2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))^2+75*x^2*log(3)*exp(1/4*exp(log(5)+1)/x/log(3))-125*x^2*log(3)),x, al
gorithm="maxima")

[Out]

-64/25*(e^(5/2*e/(x*log(3))) - 10*e^(5/4*e/(x*log(3))))/(e^(5/2*e/(x*log(3))) - 10*e^(5/4*e/(x*log(3))) + 25)

________________________________________________________________________________________

mupad [B]  time = 1.28, size = 18, normalized size = 0.90 64(e5e4xln(3)5)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(32*exp(log(5) + 1)*exp(exp(log(5) + 1)/(4*x*log(3))))/(125*x^2*log(3) + 15*x^2*exp(exp(log(5) + 1)/(2*x*
log(3)))*log(3) - 75*x^2*exp(exp(log(5) + 1)/(4*x*log(3)))*log(3) - x^2*exp((3*exp(log(5) + 1))/(4*x*log(3)))*
log(3)),x)

[Out]

64/(exp((5*exp(1))/(4*x*log(3))) - 5)^2

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 31, normalized size = 1.55 6410e5e4xlog(3)+e5e2xlog(3)+25

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(32*exp(ln(5)+1)*exp(1/4*exp(ln(5)+1)/x/ln(3))/(x**2*ln(3)*exp(1/4*exp(ln(5)+1)/x/ln(3))**3-15*x**2*l
n(3)*exp(1/4*exp(ln(5)+1)/x/ln(3))**2+75*x**2*ln(3)*exp(1/4*exp(ln(5)+1)/x/ln(3))-125*x**2*ln(3)),x)

[Out]

64/(-10*exp(5*E/(4*x*log(3))) + exp(5*E/(2*x*log(3))) + 25)

________________________________________________________________________________________