3.17.44 e3+xlog(e+40x+40log(2)+(5x+5log(2))log(x)8+log(x))(e+320x+80xlog(x)+5xlog2(x)+(8e+320x+320log(2)+(e+80x+80log(2))log(x)+(5x+5log(2))log2(x))log(e+40x+40log(2)+(5x+5log(2))log(x)8+log(x)))8e+320x+320log(2)+(e+80x+80log(2))log(x)+(5x+5log(2))log2(x)dx

Optimal. Leaf size=22 e3+xlog(5(x+log(2))+e8+log(x))

________________________________________________________________________________________

Rubi [F]  time = 3.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} exp(3+xlog(e+40x+40log(2)+(5x+5log(2))log(x)8+log(x)))(e+320x+80xlog(x)+5xlog2(x)+(8e+320x+320log(2)+(e+80x+80log(2))log(x)+(5x+5log(2))log2(x))log(e+40x+40log(2)+(5x+5log(2))log(x)8+log(x)))8e+320x+320log(2)+(e+80x+80log(2))log(x)+(5x+5log(2))log2(x)dx

Verification is not applicable to the result.

[In]

Int[(E^(3 + x*Log[(E + 40*x + 40*Log[2] + (5*x + 5*Log[2])*Log[x])/(8 + Log[x])])*(-E + 320*x + 80*x*Log[x] +
5*x*Log[x]^2 + (8*E + 320*x + 320*Log[2] + (E + 80*x + 80*Log[2])*Log[x] + (5*x + 5*Log[2])*Log[x]^2)*Log[(E +
 40*x + 40*Log[2] + (5*x + 5*Log[2])*Log[x])/(8 + Log[x])]))/(8*E + 320*x + 320*Log[2] + (E + 80*x + 80*Log[2]
)*Log[x] + (5*x + 5*Log[2])*Log[x]^2),x]

[Out]

5*E^3*Defer[Int][x*((E + 40*(x + Log[2]) + 5*(x + Log[2])*Log[x])/(8 + Log[x]))^(-1 + x), x] - E^4*Defer[Int][
((E + 40*(x + Log[2]) + 5*(x + Log[2])*Log[x])/(8 + Log[x]))^(-1 + x)/(8 + Log[x])^2, x] + E^3*Defer[Int][((E
+ 40*(x + Log[2]) + 5*(x + Log[2])*Log[x])/(8 + Log[x]))^x*Log[(E + 40*(x + Log[2]) + 5*(x + Log[2])*Log[x])/(
8 + Log[x])], x]

Rubi steps

integral=e3(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(e+320x+80xlog(x)+5xlog2(x)+(8+log(x))(e+40(x+log(2))+5(x+log(2))log(x))log(e+40(x+log(2))+5(x+log(2))log(x)8+log(x)))(8+log(x))2dx=e3(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(e+320x+80xlog(x)+5xlog2(x)+(8+log(x))(e+40(x+log(2))+5(x+log(2))log(x))log(e+40(x+log(2))+5(x+log(2))log(x)8+log(x)))(8+log(x))2dx=e3(e(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(8+log(x))2+320x(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(8+log(x))2+80xlog(x)(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(8+log(x))2+5xlog2(x)(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(8+log(x))2+(40x+e(1+40log(2)e)+5xlog(x)+5log(2)log(x))(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+xlog(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))8+log(x))dx=e3(40x+e(1+40log(2)e)+5xlog(x)+5log(2)log(x))(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+xlog(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))8+log(x)dx+(5e3)xlog2(x)(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(8+log(x))2dx+(80e3)xlog(x)(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(8+log(x))2dx+(320e3)x(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(8+log(x))2dxe4(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(8+log(x))2dx=e3(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))xlog(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))dx+(5e3)(x(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x+64x(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(8+log(x))216x(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x8+log(x))dx+(80e3)(8x(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(8+log(x))2+x(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x8+log(x))dx+(320e3)x(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(8+log(x))2dxe4(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(8+log(x))2dx=e3(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))xlog(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))dx+(5e3)x(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+xdx+2((320e3)x(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(8+log(x))2dx)(640e3)x(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(8+log(x))2dxe4(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))1+x(8+log(x))2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 29, normalized size = 1.32 e3(e+40(x+log(2))+5(x+log(2))log(x)8+log(x))x

Antiderivative was successfully verified.

[In]

Integrate[(E^(3 + x*Log[(E + 40*x + 40*Log[2] + (5*x + 5*Log[2])*Log[x])/(8 + Log[x])])*(-E + 320*x + 80*x*Log
[x] + 5*x*Log[x]^2 + (8*E + 320*x + 320*Log[2] + (E + 80*x + 80*Log[2])*Log[x] + (5*x + 5*Log[2])*Log[x]^2)*Lo
g[(E + 40*x + 40*Log[2] + (5*x + 5*Log[2])*Log[x])/(8 + Log[x])]))/(8*E + 320*x + 320*Log[2] + (E + 80*x + 80*
Log[2])*Log[x] + (5*x + 5*Log[2])*Log[x]^2),x]

[Out]

E^3*((E + 40*(x + Log[2]) + 5*(x + Log[2])*Log[x])/(8 + Log[x]))^x

________________________________________________________________________________________

fricas [A]  time = 0.88, size = 31, normalized size = 1.41 e(xlog(5(x+log(2))log(x)+40x+e+40log(2)log(x)+8)+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((5*log(2)+5*x)*log(x)^2+(80*log(2)+exp(1)+80*x)*log(x)+320*log(2)+8*exp(1)+320*x)*log(((5*log(2)+5
*x)*log(x)+40*log(2)+exp(1)+40*x)/(log(x)+8))+5*x*log(x)^2+80*x*log(x)-exp(1)+320*x)*exp(x*log(((5*log(2)+5*x)
*log(x)+40*log(2)+exp(1)+40*x)/(log(x)+8))+3)/((5*log(2)+5*x)*log(x)^2+(80*log(2)+exp(1)+80*x)*log(x)+320*log(
2)+8*exp(1)+320*x),x, algorithm="fricas")

[Out]

e^(x*log((5*(x + log(2))*log(x) + 40*x + e + 40*log(2))/(log(x) + 8)) + 3)

________________________________________________________________________________________

giac [B]  time = 0.88, size = 58, normalized size = 2.64 e(xlog(5xlog(x)log(x)+8+5log(2)log(x)log(x)+8+40xlog(x)+8+elog(x)+8+40log(2)log(x)+8)+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((5*log(2)+5*x)*log(x)^2+(80*log(2)+exp(1)+80*x)*log(x)+320*log(2)+8*exp(1)+320*x)*log(((5*log(2)+5
*x)*log(x)+40*log(2)+exp(1)+40*x)/(log(x)+8))+5*x*log(x)^2+80*x*log(x)-exp(1)+320*x)*exp(x*log(((5*log(2)+5*x)
*log(x)+40*log(2)+exp(1)+40*x)/(log(x)+8))+3)/((5*log(2)+5*x)*log(x)^2+(80*log(2)+exp(1)+80*x)*log(x)+320*log(
2)+8*exp(1)+320*x),x, algorithm="giac")

[Out]

e^(x*log(5*x*log(x)/(log(x) + 8) + 5*log(2)*log(x)/(log(x) + 8) + 40*x/(log(x) + 8) + e/(log(x) + 8) + 40*log(
2)/(log(x) + 8)) + 3)

________________________________________________________________________________________

maple [C]  time = 0.65, size = 249, normalized size = 11.32




method result size



risch (ln(x)+8)x(e+(5ln(x)+40)ln(2)+(5ln(x)+40)x)xe3ixπcsgn(i(e+(5ln(x)+40)ln(2)+(5ln(x)+40)x)ln(x)+8)32+ixπcsgn(i(e+(5ln(x)+40)ln(2)+(5ln(x)+40)x)ln(x)+8)2csgn(iln(x)+8)2+ixπcsgn(i(e+(5ln(x)+40)ln(2)+(5ln(x)+40)x)ln(x)+8)2csgn(i(e+(5ln(x)+40)ln(2)+(5ln(x)+40)x))2ixπcsgn(i(e+(5ln(x)+40)ln(2)+(5ln(x)+40)x)ln(x)+8)csgn(iln(x)+8)csgn(i(e+(5ln(x)+40)ln(2)+(5ln(x)+40)x))2 249



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((5*ln(2)+5*x)*ln(x)^2+(80*ln(2)+exp(1)+80*x)*ln(x)+320*ln(2)+8*exp(1)+320*x)*ln(((5*ln(2)+5*x)*ln(x)+40*
ln(2)+exp(1)+40*x)/(ln(x)+8))+5*x*ln(x)^2+80*x*ln(x)-exp(1)+320*x)*exp(x*ln(((5*ln(2)+5*x)*ln(x)+40*ln(2)+exp(
1)+40*x)/(ln(x)+8))+3)/((5*ln(2)+5*x)*ln(x)^2+(80*ln(2)+exp(1)+80*x)*ln(x)+320*ln(2)+8*exp(1)+320*x),x,method=
_RETURNVERBOSE)

[Out]

(ln(x)+8)^(-x)*(exp(1)+(5*ln(x)+40)*ln(2)+(5*ln(x)+40)*x)^x*exp(3-1/2*I*x*Pi*csgn(I/(ln(x)+8)*(exp(1)+(5*ln(x)
+40)*ln(2)+(5*ln(x)+40)*x))^3+1/2*I*x*Pi*csgn(I/(ln(x)+8)*(exp(1)+(5*ln(x)+40)*ln(2)+(5*ln(x)+40)*x))^2*csgn(I
/(ln(x)+8))+1/2*I*x*Pi*csgn(I/(ln(x)+8)*(exp(1)+(5*ln(x)+40)*ln(2)+(5*ln(x)+40)*x))^2*csgn(I*(exp(1)+(5*ln(x)+
40)*ln(2)+(5*ln(x)+40)*x))-1/2*I*x*Pi*csgn(I/(ln(x)+8)*(exp(1)+(5*ln(x)+40)*ln(2)+(5*ln(x)+40)*x))*csgn(I/(ln(
x)+8))*csgn(I*(exp(1)+(5*ln(x)+40)*ln(2)+(5*ln(x)+40)*x)))

________________________________________________________________________________________

maxima [A]  time = 0.74, size = 32, normalized size = 1.45 e(xlog(5(x+log(2))log(x)+40x+e+40log(2))xlog(log(x)+8)+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((5*log(2)+5*x)*log(x)^2+(80*log(2)+exp(1)+80*x)*log(x)+320*log(2)+8*exp(1)+320*x)*log(((5*log(2)+5
*x)*log(x)+40*log(2)+exp(1)+40*x)/(log(x)+8))+5*x*log(x)^2+80*x*log(x)-exp(1)+320*x)*exp(x*log(((5*log(2)+5*x)
*log(x)+40*log(2)+exp(1)+40*x)/(log(x)+8))+3)/((5*log(2)+5*x)*log(x)^2+(80*log(2)+exp(1)+80*x)*log(x)+320*log(
2)+8*exp(1)+320*x),x, algorithm="maxima")

[Out]

e^(x*log(5*(x + log(2))*log(x) + 40*x + e + 40*log(2)) - x*log(log(x) + 8) + 3)

________________________________________________________________________________________

mupad [B]  time = 2.15, size = 33, normalized size = 1.50 e3(40x+e+40ln(2)+5ln(2)ln(x)+5xln(x)ln(x)+8)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x*log((40*x + exp(1) + 40*log(2) + log(x)*(5*x + 5*log(2)))/(log(x) + 8)) + 3)*(320*x - exp(1) + 5*x*
log(x)^2 + log((40*x + exp(1) + 40*log(2) + log(x)*(5*x + 5*log(2)))/(log(x) + 8))*(320*x + 8*exp(1) + 320*log
(2) + log(x)^2*(5*x + 5*log(2)) + log(x)*(80*x + exp(1) + 80*log(2))) + 80*x*log(x)))/(320*x + 8*exp(1) + 320*
log(2) + log(x)^2*(5*x + 5*log(2)) + log(x)*(80*x + exp(1) + 80*log(2))),x)

[Out]

exp(3)*((40*x + exp(1) + 40*log(2) + 5*log(2)*log(x) + 5*x*log(x))/(log(x) + 8))^x

________________________________________________________________________________________

sympy [A]  time = 2.69, size = 34, normalized size = 1.55 exlog(40x+(5x+5log(2))log(x)+e+40log(2)log(x)+8)+3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((5*ln(2)+5*x)*ln(x)**2+(80*ln(2)+exp(1)+80*x)*ln(x)+320*ln(2)+8*exp(1)+320*x)*ln(((5*ln(2)+5*x)*ln
(x)+40*ln(2)+exp(1)+40*x)/(ln(x)+8))+5*x*ln(x)**2+80*x*ln(x)-exp(1)+320*x)*exp(x*ln(((5*ln(2)+5*x)*ln(x)+40*ln
(2)+exp(1)+40*x)/(ln(x)+8))+3)/((5*ln(2)+5*x)*ln(x)**2+(80*ln(2)+exp(1)+80*x)*ln(x)+320*ln(2)+8*exp(1)+320*x),
x)

[Out]

exp(x*log((40*x + (5*x + 5*log(2))*log(x) + E + 40*log(2))/(log(x) + 8)) + 3)

________________________________________________________________________________________