Optimal. Leaf size=22 \[ e^{3+x \log \left (5 (x+\log (2))+\frac {e}{8+\log (x)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (3+x \log \left (\frac {e+40 x+40 \log (2)+(5 x+5 \log (2)) \log (x)}{8+\log (x)}\right )\right ) \left (-e+320 x+80 x \log (x)+5 x \log ^2(x)+\left (8 e+320 x+320 \log (2)+(e+80 x+80 \log (2)) \log (x)+(5 x+5 \log (2)) \log ^2(x)\right ) \log \left (\frac {e+40 x+40 \log (2)+(5 x+5 \log (2)) \log (x)}{8+\log (x)}\right )\right )}{8 e+320 x+320 \log (2)+(e+80 x+80 \log (2)) \log (x)+(5 x+5 \log (2)) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^3 \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x} \left (-e+320 x+80 x \log (x)+5 x \log ^2(x)+(8+\log (x)) (e+40 (x+\log (2))+5 (x+\log (2)) \log (x)) \log \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )\right )}{(8+\log (x))^2} \, dx\\ &=e^3 \int \frac {\left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x} \left (-e+320 x+80 x \log (x)+5 x \log ^2(x)+(8+\log (x)) (e+40 (x+\log (2))+5 (x+\log (2)) \log (x)) \log \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )\right )}{(8+\log (x))^2} \, dx\\ &=e^3 \int \left (-\frac {e \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{(8+\log (x))^2}+\frac {320 x \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{(8+\log (x))^2}+\frac {80 x \log (x) \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{(8+\log (x))^2}+\frac {5 x \log ^2(x) \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{(8+\log (x))^2}+\frac {\left (40 x+e \left (1+\frac {40 \log (2)}{e}\right )+5 x \log (x)+5 \log (2) \log (x)\right ) \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x} \log \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )}{8+\log (x)}\right ) \, dx\\ &=e^3 \int \frac {\left (40 x+e \left (1+\frac {40 \log (2)}{e}\right )+5 x \log (x)+5 \log (2) \log (x)\right ) \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x} \log \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )}{8+\log (x)} \, dx+\left (5 e^3\right ) \int \frac {x \log ^2(x) \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{(8+\log (x))^2} \, dx+\left (80 e^3\right ) \int \frac {x \log (x) \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{(8+\log (x))^2} \, dx+\left (320 e^3\right ) \int \frac {x \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{(8+\log (x))^2} \, dx-e^4 \int \frac {\left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{(8+\log (x))^2} \, dx\\ &=e^3 \int \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^x \log \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right ) \, dx+\left (5 e^3\right ) \int \left (x \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}+\frac {64 x \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{(8+\log (x))^2}-\frac {16 x \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{8+\log (x)}\right ) \, dx+\left (80 e^3\right ) \int \left (-\frac {8 x \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{(8+\log (x))^2}+\frac {x \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{8+\log (x)}\right ) \, dx+\left (320 e^3\right ) \int \frac {x \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{(8+\log (x))^2} \, dx-e^4 \int \frac {\left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{(8+\log (x))^2} \, dx\\ &=e^3 \int \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^x \log \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right ) \, dx+\left (5 e^3\right ) \int x \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x} \, dx+2 \left (\left (320 e^3\right ) \int \frac {x \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{(8+\log (x))^2} \, dx\right )-\left (640 e^3\right ) \int \frac {x \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{(8+\log (x))^2} \, dx-e^4 \int \frac {\left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^{-1+x}}{(8+\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 29, normalized size = 1.32 \begin {gather*} e^3 \left (\frac {e+40 (x+\log (2))+5 (x+\log (2)) \log (x)}{8+\log (x)}\right )^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 31, normalized size = 1.41 \begin {gather*} e^{\left (x \log \left (\frac {5 \, {\left (x + \log \relax (2)\right )} \log \relax (x) + 40 \, x + e + 40 \, \log \relax (2)}{\log \relax (x) + 8}\right ) + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.88, size = 58, normalized size = 2.64 \begin {gather*} e^{\left (x \log \left (\frac {5 \, x \log \relax (x)}{\log \relax (x) + 8} + \frac {5 \, \log \relax (2) \log \relax (x)}{\log \relax (x) + 8} + \frac {40 \, x}{\log \relax (x) + 8} + \frac {e}{\log \relax (x) + 8} + \frac {40 \, \log \relax (2)}{\log \relax (x) + 8}\right ) + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.65, size = 249, normalized size = 11.32
method | result | size |
risch | \(\left (\ln \relax (x )+8\right )^{-x} \left ({\mathrm e}+\left (5 \ln \relax (x )+40\right ) \ln \relax (2)+\left (5 \ln \relax (x )+40\right ) x \right )^{x} {\mathrm e}^{3-\frac {i x \pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}+\left (5 \ln \relax (x )+40\right ) \ln \relax (2)+\left (5 \ln \relax (x )+40\right ) x \right )}{\ln \relax (x )+8}\right )^{3}}{2}+\frac {i x \pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}+\left (5 \ln \relax (x )+40\right ) \ln \relax (2)+\left (5 \ln \relax (x )+40\right ) x \right )}{\ln \relax (x )+8}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )+8}\right )}{2}+\frac {i x \pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}+\left (5 \ln \relax (x )+40\right ) \ln \relax (2)+\left (5 \ln \relax (x )+40\right ) x \right )}{\ln \relax (x )+8}\right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}+\left (5 \ln \relax (x )+40\right ) \ln \relax (2)+\left (5 \ln \relax (x )+40\right ) x \right )\right )}{2}-\frac {i x \pi \,\mathrm {csgn}\left (\frac {i \left ({\mathrm e}+\left (5 \ln \relax (x )+40\right ) \ln \relax (2)+\left (5 \ln \relax (x )+40\right ) x \right )}{\ln \relax (x )+8}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )+8}\right ) \mathrm {csgn}\left (i \left ({\mathrm e}+\left (5 \ln \relax (x )+40\right ) \ln \relax (2)+\left (5 \ln \relax (x )+40\right ) x \right )\right )}{2}}\) | \(249\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 32, normalized size = 1.45 \begin {gather*} e^{\left (x \log \left (5 \, {\left (x + \log \relax (2)\right )} \log \relax (x) + 40 \, x + e + 40 \, \log \relax (2)\right ) - x \log \left (\log \relax (x) + 8\right ) + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.15, size = 33, normalized size = 1.50 \begin {gather*} {\mathrm {e}}^3\,{\left (\frac {40\,x+\mathrm {e}+40\,\ln \relax (2)+5\,\ln \relax (2)\,\ln \relax (x)+5\,x\,\ln \relax (x)}{\ln \relax (x)+8}\right )}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.69, size = 34, normalized size = 1.55 \begin {gather*} e^{x \log {\left (\frac {40 x + \left (5 x + 5 \log {\relax (2 )}\right ) \log {\relax (x )} + e + 40 \log {\relax (2 )}}{\log {\relax (x )} + 8} \right )} + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________