Optimal. Leaf size=22 \[ \log \left (-x+\frac {1}{4} x^{-1+6 \left (-\frac {1}{x}+x\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x^3+x^{\frac {2 \left (-3+3 x^2\right )}{x}} \left (-6-x+6 x^2+\left (6+6 x^2\right ) \log (x)\right )}{-4 x^4+x^{2+\frac {2 \left (-3+3 x^2\right )}{x}}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2 x^{-1+\frac {3}{x}} \left (-3-x+3 x^2+3 \log (x)+3 x^2 \log (x)\right )}{2 x^{1+\frac {3}{x}}-x^{3 x}}-\frac {2 x^{-1+\frac {3}{x}} \left (-3-x+3 x^2+3 \log (x)+3 x^2 \log (x)\right )}{2 x^{1+\frac {3}{x}}+x^{3 x}}+\frac {-6-x+6 x^2+6 \log (x)+6 x^2 \log (x)}{x^2}\right ) \, dx\\ &=-\left (2 \int \frac {x^{-1+\frac {3}{x}} \left (-3-x+3 x^2+3 \log (x)+3 x^2 \log (x)\right )}{2 x^{1+\frac {3}{x}}-x^{3 x}} \, dx\right )-2 \int \frac {x^{-1+\frac {3}{x}} \left (-3-x+3 x^2+3 \log (x)+3 x^2 \log (x)\right )}{2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx+\int \frac {-6-x+6 x^2+6 \log (x)+6 x^2 \log (x)}{x^2} \, dx\\ &=-\left (2 \int \left (\frac {3 x^{1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}-x^{3 x}}-\frac {x^{3/x}}{2 x^{1+\frac {3}{x}}-x^{3 x}}+\frac {3 x^{-1+\frac {3}{x}}}{-2 x^{1+\frac {3}{x}}+x^{3 x}}+\frac {3 x^{1+\frac {3}{x}} \log (x)}{2 x^{1+\frac {3}{x}}-x^{3 x}}-\frac {3 x^{-1+\frac {3}{x}} \log (x)}{-2 x^{1+\frac {3}{x}}+x^{3 x}}\right ) \, dx\right )-2 \int \left (-\frac {3 x^{-1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}+x^{3 x}}+\frac {3 x^{1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}+x^{3 x}}-\frac {x^{3/x}}{2 x^{1+\frac {3}{x}}+x^{3 x}}+\frac {3 x^{-1+\frac {3}{x}} \log (x)}{2 x^{1+\frac {3}{x}}+x^{3 x}}+\frac {3 x^{1+\frac {3}{x}} \log (x)}{2 x^{1+\frac {3}{x}}+x^{3 x}}\right ) \, dx+\int \left (\frac {-6-x+6 x^2}{x^2}+\frac {6 \left (1+x^2\right ) \log (x)}{x^2}\right ) \, dx\\ &=2 \int \frac {x^{3/x}}{2 x^{1+\frac {3}{x}}-x^{3 x}} \, dx+2 \int \frac {x^{3/x}}{2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx-6 \int \frac {x^{1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}-x^{3 x}} \, dx-6 \int \frac {x^{-1+\frac {3}{x}}}{-2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx+6 \int \frac {x^{-1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx-6 \int \frac {x^{1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx+6 \int \frac {\left (1+x^2\right ) \log (x)}{x^2} \, dx-6 \int \frac {x^{1+\frac {3}{x}} \log (x)}{2 x^{1+\frac {3}{x}}-x^{3 x}} \, dx+6 \int \frac {x^{-1+\frac {3}{x}} \log (x)}{-2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx-6 \int \frac {x^{-1+\frac {3}{x}} \log (x)}{2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx-6 \int \frac {x^{1+\frac {3}{x}} \log (x)}{2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx+\int \frac {-6-x+6 x^2}{x^2} \, dx\\ &=-6 \left (\frac {1}{x}-x\right ) \log (x)+2 \int \frac {x^{3/x}}{2 x^{1+\frac {3}{x}}-x^{3 x}} \, dx+2 \int \frac {x^{3/x}}{2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx-6 \int \left (1-\frac {1}{x^2}\right ) \, dx-6 \int \frac {x^{1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}-x^{3 x}} \, dx+6 \int \frac {x^{-1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx-6 \int \frac {x^{1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx-6 \int \frac {1}{x \left (-2 x+x^{-\frac {3}{x}+3 x}\right )} \, dx+6 \int \frac {\int \frac {x^{1+\frac {3}{x}}}{-x^{3 x}+2 x^{\frac {3+x}{x}}} \, dx}{x} \, dx+6 \int \frac {\int \frac {x^{-1+\frac {3}{x}}}{x^{3 x}+2 x^{\frac {3+x}{x}}} \, dx}{x} \, dx+6 \int \frac {\int \frac {x^{1+\frac {3}{x}}}{x^{3 x}+2 x^{\frac {3+x}{x}}} \, dx}{x} \, dx-6 \int \frac {\int \frac {1}{x \left (-2 x+x^{-\frac {3}{x}+3 x}\right )} \, dx}{x} \, dx-(6 \log (x)) \int \frac {x^{1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}-x^{3 x}} \, dx-(6 \log (x)) \int \frac {x^{-1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx-(6 \log (x)) \int \frac {x^{1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx+(6 \log (x)) \int \frac {1}{x \left (-2 x+x^{-\frac {3}{x}+3 x}\right )} \, dx+\int \left (6-\frac {6}{x^2}-\frac {1}{x}\right ) \, dx\\ &=-\log (x)-6 \left (\frac {1}{x}-x\right ) \log (x)+2 \int \frac {x^{3/x}}{2 x^{1+\frac {3}{x}}-x^{3 x}} \, dx+2 \int \frac {x^{3/x}}{2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx-6 \int \frac {x^{1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}-x^{3 x}} \, dx+6 \int \frac {x^{-1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx-6 \int \frac {x^{1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx-6 \int \frac {1}{x \left (-2 x+x^{-\frac {3}{x}+3 x}\right )} \, dx+6 \int \frac {\int \frac {x^{1+\frac {3}{x}}}{-x^{3 x}+2 x^{\frac {3+x}{x}}} \, dx}{x} \, dx+6 \int \frac {\int \frac {x^{-1+\frac {3}{x}}}{x^{3 x}+2 x^{\frac {3+x}{x}}} \, dx}{x} \, dx+6 \int \frac {\int \frac {x^{1+\frac {3}{x}}}{x^{3 x}+2 x^{\frac {3+x}{x}}} \, dx}{x} \, dx-6 \int \frac {\int \frac {1}{x \left (-2 x+x^{-\frac {3}{x}+3 x}\right )} \, dx}{x} \, dx-(6 \log (x)) \int \frac {x^{1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}-x^{3 x}} \, dx-(6 \log (x)) \int \frac {x^{-1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx-(6 \log (x)) \int \frac {x^{1+\frac {3}{x}}}{2 x^{1+\frac {3}{x}}+x^{3 x}} \, dx+(6 \log (x)) \int \frac {1}{x \left (-2 x+x^{-\frac {3}{x}+3 x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.54, size = 24, normalized size = 1.09 \begin {gather*} -\log (x)+\log \left (-4 x^2+x^{\frac {6 \left (-1+x^2\right )}{x}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 24, normalized size = 1.09 \begin {gather*} \log \left (-4 \, x^{2} + x^{\frac {6 \, {\left (x^{2} - 1\right )}}{x}}\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.57, size = 51, normalized size = 2.32 \begin {gather*} \log \left (-\frac {{\left (2 \, x x^{\frac {3}{x}} + x^{3 \, x}\right )} {\left (2 \, x x^{\frac {3}{x}} - x^{3 \, x}\right )}}{x^{\frac {6}{x}}}\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 53, normalized size = 2.41
method | result | size |
risch | \(\frac {6 \left (x^{2}-1\right ) \ln \relax (x )}{x}-\ln \relax (x )-\frac {2 \left (3 x^{2}-3\right ) \ln \relax (x )}{x}+\ln \left (x^{\frac {6 x^{2}-6}{x}}-4 x^{2}\right )\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.56, size = 56, normalized size = 2.55 \begin {gather*} -\frac {6 \, \log \relax (x)}{x} + \log \relax (x) + \log \left (\frac {2 \, x x^{\frac {3}{x}} + x^{3 \, x}}{2 \, x}\right ) + \log \left (\frac {2 \, x x^{\frac {3}{x}} - x^{3 \, x}}{2 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.39, size = 26, normalized size = 1.18 \begin {gather*} \ln \left (x^2-\frac {x^{6\,x}}{4\,x^{6/x}}\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 24, normalized size = 1.09 \begin {gather*} - \log {\relax (x )} + \log {\left (- 4 x^{2} + e^{\frac {2 \left (3 x^{2} - 3\right ) \log {\relax (x )}}{x}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________