3.17.45 4x3+x2(3+3x2)x(6x+6x2+(6+6x2)log(x))4x4+x2+2(3+3x2)xdx

Optimal. Leaf size=22 log(x+14x1+6(1x+x))

________________________________________________________________________________________

Rubi [F]  time = 1.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 4x3+x2(3+3x2)x(6x+6x2+(6+6x2)log(x))4x4+x2+2(3+3x2)xdx

Verification is not applicable to the result.

[In]

Int[(-4*x^3 + x^((2*(-3 + 3*x^2))/x)*(-6 - x + 6*x^2 + (6 + 6*x^2)*Log[x]))/(-4*x^4 + x^(2 + (2*(-3 + 3*x^2))/
x)),x]

[Out]

-Log[x] - 6*(x^(-1) - x)*Log[x] - 6*Defer[Int][x^(1 + 3/x)/(2*x^(1 + 3/x) - x^(3*x)), x] - 6*Log[x]*Defer[Int]
[x^(1 + 3/x)/(2*x^(1 + 3/x) - x^(3*x)), x] + 2*Defer[Int][x^(3/x)/(2*x^(1 + 3/x) - x^(3*x)), x] + 6*Defer[Int]
[x^(-1 + 3/x)/(2*x^(1 + 3/x) + x^(3*x)), x] - 6*Log[x]*Defer[Int][x^(-1 + 3/x)/(2*x^(1 + 3/x) + x^(3*x)), x] -
 6*Defer[Int][x^(1 + 3/x)/(2*x^(1 + 3/x) + x^(3*x)), x] - 6*Log[x]*Defer[Int][x^(1 + 3/x)/(2*x^(1 + 3/x) + x^(
3*x)), x] + 2*Defer[Int][x^(3/x)/(2*x^(1 + 3/x) + x^(3*x)), x] - 6*Defer[Int][1/(x*(-2*x + x^(-3/x + 3*x))), x
] + 6*Log[x]*Defer[Int][1/(x*(-2*x + x^(-3/x + 3*x))), x] + 6*Defer[Int][Defer[Int][x^(1 + 3/x)/(-x^(3*x) + 2*
x^((3 + x)/x)), x]/x, x] + 6*Defer[Int][Defer[Int][x^(-1 + 3/x)/(x^(3*x) + 2*x^((3 + x)/x)), x]/x, x] + 6*Defe
r[Int][Defer[Int][x^(1 + 3/x)/(x^(3*x) + 2*x^((3 + x)/x)), x]/x, x] - 6*Defer[Int][Defer[Int][1/(x*(-2*x + x^(
-3/x + 3*x))), x]/x, x]

Rubi steps

integral=(2x1+3x(3x+3x2+3log(x)+3x2log(x))2x1+3xx3x2x1+3x(3x+3x2+3log(x)+3x2log(x))2x1+3x+x3x+6x+6x2+6log(x)+6x2log(x)x2)dx=(2x1+3x(3x+3x2+3log(x)+3x2log(x))2x1+3xx3xdx)2x1+3x(3x+3x2+3log(x)+3x2log(x))2x1+3x+x3xdx+6x+6x2+6log(x)+6x2log(x)x2dx=(2(3x1+3x2x1+3xx3xx3/x2x1+3xx3x+3x1+3x2x1+3x+x3x+3x1+3xlog(x)2x1+3xx3x3x1+3xlog(x)2x1+3x+x3x)dx)2(3x1+3x2x1+3x+x3x+3x1+3x2x1+3x+x3xx3/x2x1+3x+x3x+3x1+3xlog(x)2x1+3x+x3x+3x1+3xlog(x)2x1+3x+x3x)dx+(6x+6x2x2+6(1+x2)log(x)x2)dx=2x3/x2x1+3xx3xdx+2x3/x2x1+3x+x3xdx6x1+3x2x1+3xx3xdx6x1+3x2x1+3x+x3xdx+6x1+3x2x1+3x+x3xdx6x1+3x2x1+3x+x3xdx+6(1+x2)log(x)x2dx6x1+3xlog(x)2x1+3xx3xdx+6x1+3xlog(x)2x1+3x+x3xdx6x1+3xlog(x)2x1+3x+x3xdx6x1+3xlog(x)2x1+3x+x3xdx+6x+6x2x2dx=6(1xx)log(x)+2x3/x2x1+3xx3xdx+2x3/x2x1+3x+x3xdx6(11x2)dx6x1+3x2x1+3xx3xdx+6x1+3x2x1+3x+x3xdx6x1+3x2x1+3x+x3xdx61x(2x+x3x+3x)dx+6x1+3xx3x+2x3+xxdxxdx+6x1+3xx3x+2x3+xxdxxdx+6x1+3xx3x+2x3+xxdxxdx61x(2x+x3x+3x)dxxdx(6log(x))x1+3x2x1+3xx3xdx(6log(x))x1+3x2x1+3x+x3xdx(6log(x))x1+3x2x1+3x+x3xdx+(6log(x))1x(2x+x3x+3x)dx+(66x21x)dx=log(x)6(1xx)log(x)+2x3/x2x1+3xx3xdx+2x3/x2x1+3x+x3xdx6x1+3x2x1+3xx3xdx+6x1+3x2x1+3x+x3xdx6x1+3x2x1+3x+x3xdx61x(2x+x3x+3x)dx+6x1+3xx3x+2x3+xxdxxdx+6x1+3xx3x+2x3+xxdxxdx+6x1+3xx3x+2x3+xxdxxdx61x(2x+x3x+3x)dxxdx(6log(x))x1+3x2x1+3xx3xdx(6log(x))x1+3x2x1+3x+x3xdx(6log(x))x1+3x2x1+3x+x3xdx+(6log(x))1x(2x+x3x+3x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.54, size = 24, normalized size = 1.09 log(x)+log(4x2+x6(1+x2)x)

Antiderivative was successfully verified.

[In]

Integrate[(-4*x^3 + x^((2*(-3 + 3*x^2))/x)*(-6 - x + 6*x^2 + (6 + 6*x^2)*Log[x]))/(-4*x^4 + x^(2 + (2*(-3 + 3*
x^2))/x)),x]

[Out]

-Log[x] + Log[-4*x^2 + x^((6*(-1 + x^2))/x)]

________________________________________________________________________________________

fricas [A]  time = 0.95, size = 24, normalized size = 1.09 log(4x2+x6(x21)x)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((6*x^2+6)*log(x)+6*x^2-x-6)*exp((3*x^2-3)*log(x)/x)^2-4*x^3)/(x^2*exp((3*x^2-3)*log(x)/x)^2-4*x^4)
,x, algorithm="fricas")

[Out]

log(-4*x^2 + x^(6*(x^2 - 1)/x)) - log(x)

________________________________________________________________________________________

giac [B]  time = 0.57, size = 51, normalized size = 2.32 log((2xx3x+x3x)(2xx3xx3x)x6x)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((6*x^2+6)*log(x)+6*x^2-x-6)*exp((3*x^2-3)*log(x)/x)^2-4*x^3)/(x^2*exp((3*x^2-3)*log(x)/x)^2-4*x^4)
,x, algorithm="giac")

[Out]

log(-(2*x*x^(3/x) + x^(3*x))*(2*x*x^(3/x) - x^(3*x))/x^(6/x)) - log(x)

________________________________________________________________________________________

maple [B]  time = 0.05, size = 53, normalized size = 2.41




method result size



risch 6(x21)ln(x)xln(x)2(3x23)ln(x)x+ln(x6x26x4x2) 53



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((6*x^2+6)*ln(x)+6*x^2-x-6)*exp((3*x^2-3)*ln(x)/x)^2-4*x^3)/(x^2*exp((3*x^2-3)*ln(x)/x)^2-4*x^4),x,method
=_RETURNVERBOSE)

[Out]

6*(x^2-1)*ln(x)/x-ln(x)-2*(3*x^2-3)*ln(x)/x+ln((x^(3*(x^2-1)/x))^2-4*x^2)

________________________________________________________________________________________

maxima [B]  time = 0.56, size = 56, normalized size = 2.55 6log(x)x+log(x)+log(2xx3x+x3x2x)+log(2xx3xx3x2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((6*x^2+6)*log(x)+6*x^2-x-6)*exp((3*x^2-3)*log(x)/x)^2-4*x^3)/(x^2*exp((3*x^2-3)*log(x)/x)^2-4*x^4)
,x, algorithm="maxima")

[Out]

-6*log(x)/x + log(x) + log(1/2*(2*x*x^(3/x) + x^(3*x))/x) + log(1/2*(2*x*x^(3/x) - x^(3*x))/x)

________________________________________________________________________________________

mupad [B]  time = 1.39, size = 26, normalized size = 1.18 ln(x2x6x4x6/x)ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp((2*log(x)*(3*x^2 - 3))/x)*(x - 6*x^2 - log(x)*(6*x^2 + 6) + 6) + 4*x^3)/(x^2*exp((2*log(x)*(3*x^2 -
3))/x) - 4*x^4),x)

[Out]

log(x^2 - x^(6*x)/(4*x^(6/x))) - log(x)

________________________________________________________________________________________

sympy [A]  time = 0.37, size = 24, normalized size = 1.09 log(x)+log(4x2+e2(3x23)log(x)x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((6*x**2+6)*ln(x)+6*x**2-x-6)*exp((3*x**2-3)*ln(x)/x)**2-4*x**3)/(x**2*exp((3*x**2-3)*ln(x)/x)**2-4
*x**4),x)

[Out]

-log(x) + log(-4*x**2 + exp(2*(3*x**2 - 3)*log(x)/x))

________________________________________________________________________________________