3.17.45
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [F] time = 1.98, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-4*x^3 + x^((2*(-3 + 3*x^2))/x)*(-6 - x + 6*x^2 + (6 + 6*x^2)*Log[x]))/(-4*x^4 + x^(2 + (2*(-3 + 3*x^2))/
x)),x]
[Out]
-Log[x] - 6*(x^(-1) - x)*Log[x] - 6*Defer[Int][x^(1 + 3/x)/(2*x^(1 + 3/x) - x^(3*x)), x] - 6*Log[x]*Defer[Int]
[x^(1 + 3/x)/(2*x^(1 + 3/x) - x^(3*x)), x] + 2*Defer[Int][x^(3/x)/(2*x^(1 + 3/x) - x^(3*x)), x] + 6*Defer[Int]
[x^(-1 + 3/x)/(2*x^(1 + 3/x) + x^(3*x)), x] - 6*Log[x]*Defer[Int][x^(-1 + 3/x)/(2*x^(1 + 3/x) + x^(3*x)), x] -
6*Defer[Int][x^(1 + 3/x)/(2*x^(1 + 3/x) + x^(3*x)), x] - 6*Log[x]*Defer[Int][x^(1 + 3/x)/(2*x^(1 + 3/x) + x^(
3*x)), x] + 2*Defer[Int][x^(3/x)/(2*x^(1 + 3/x) + x^(3*x)), x] - 6*Defer[Int][1/(x*(-2*x + x^(-3/x + 3*x))), x
] + 6*Log[x]*Defer[Int][1/(x*(-2*x + x^(-3/x + 3*x))), x] + 6*Defer[Int][Defer[Int][x^(1 + 3/x)/(-x^(3*x) + 2*
x^((3 + x)/x)), x]/x, x] + 6*Defer[Int][Defer[Int][x^(-1 + 3/x)/(x^(3*x) + 2*x^((3 + x)/x)), x]/x, x] + 6*Defe
r[Int][Defer[Int][x^(1 + 3/x)/(x^(3*x) + 2*x^((3 + x)/x)), x]/x, x] - 6*Defer[Int][Defer[Int][1/(x*(-2*x + x^(
-3/x + 3*x))), x]/x, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.54, size = 24, normalized size = 1.09
Antiderivative was successfully verified.
[In]
Integrate[(-4*x^3 + x^((2*(-3 + 3*x^2))/x)*(-6 - x + 6*x^2 + (6 + 6*x^2)*Log[x]))/(-4*x^4 + x^(2 + (2*(-3 + 3*
x^2))/x)),x]
[Out]
-Log[x] + Log[-4*x^2 + x^((6*(-1 + x^2))/x)]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 24, normalized size = 1.09
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((6*x^2+6)*log(x)+6*x^2-x-6)*exp((3*x^2-3)*log(x)/x)^2-4*x^3)/(x^2*exp((3*x^2-3)*log(x)/x)^2-4*x^4)
,x, algorithm="fricas")
[Out]
log(-4*x^2 + x^(6*(x^2 - 1)/x)) - log(x)
________________________________________________________________________________________
giac [B] time = 0.57, size = 51, normalized size = 2.32
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((6*x^2+6)*log(x)+6*x^2-x-6)*exp((3*x^2-3)*log(x)/x)^2-4*x^3)/(x^2*exp((3*x^2-3)*log(x)/x)^2-4*x^4)
,x, algorithm="giac")
[Out]
log(-(2*x*x^(3/x) + x^(3*x))*(2*x*x^(3/x) - x^(3*x))/x^(6/x)) - log(x)
________________________________________________________________________________________
maple [B] time = 0.05, size = 53, normalized size = 2.41
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((6*x^2+6)*ln(x)+6*x^2-x-6)*exp((3*x^2-3)*ln(x)/x)^2-4*x^3)/(x^2*exp((3*x^2-3)*ln(x)/x)^2-4*x^4),x,method
=_RETURNVERBOSE)
[Out]
6*(x^2-1)*ln(x)/x-ln(x)-2*(3*x^2-3)*ln(x)/x+ln((x^(3*(x^2-1)/x))^2-4*x^2)
________________________________________________________________________________________
maxima [B] time = 0.56, size = 56, normalized size = 2.55
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((6*x^2+6)*log(x)+6*x^2-x-6)*exp((3*x^2-3)*log(x)/x)^2-4*x^3)/(x^2*exp((3*x^2-3)*log(x)/x)^2-4*x^4)
,x, algorithm="maxima")
[Out]
-6*log(x)/x + log(x) + log(1/2*(2*x*x^(3/x) + x^(3*x))/x) + log(1/2*(2*x*x^(3/x) - x^(3*x))/x)
________________________________________________________________________________________
mupad [B] time = 1.39, size = 26, normalized size = 1.18
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp((2*log(x)*(3*x^2 - 3))/x)*(x - 6*x^2 - log(x)*(6*x^2 + 6) + 6) + 4*x^3)/(x^2*exp((2*log(x)*(3*x^2 -
3))/x) - 4*x^4),x)
[Out]
log(x^2 - x^(6*x)/(4*x^(6/x))) - log(x)
________________________________________________________________________________________
sympy [A] time = 0.37, size = 24, normalized size = 1.09
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((6*x**2+6)*ln(x)+6*x**2-x-6)*exp((3*x**2-3)*ln(x)/x)**2-4*x**3)/(x**2*exp((3*x**2-3)*ln(x)/x)**2-4
*x**4),x)
[Out]
-log(x) + log(-4*x**2 + exp(2*(3*x**2 - 3)*log(x)/x))
________________________________________________________________________________________