Optimal. Leaf size=20 \[ 27+\left (-2+e^x\right )^2-x+x \log \left (\frac {5 x}{2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 22, normalized size of antiderivative = 1.10, number of steps used = 4, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {2194, 2295} \begin {gather*} -x-4 e^x+e^{2 x}+x \log \left (\frac {5 x}{2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 \int e^{2 x} \, dx-4 \int e^x \, dx+\int \log \left (\frac {5 x}{2}\right ) \, dx\\ &=-4 e^x+e^{2 x}-x+x \log \left (\frac {5 x}{2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 22, normalized size = 1.10 \begin {gather*} -4 e^x+e^{2 x}-x+x \log \left (\frac {5 x}{2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 18, normalized size = 0.90 \begin {gather*} x \log \left (\frac {5}{2} \, x\right ) - x + e^{\left (2 \, x\right )} - 4 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.48, size = 18, normalized size = 0.90 \begin {gather*} x \log \left (\frac {5}{2} \, x\right ) - x + e^{\left (2 \, x\right )} - 4 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 19, normalized size = 0.95
method | result | size |
default | \({\mathrm e}^{2 x}-4 \,{\mathrm e}^{x}+\ln \left (\frac {5 x}{2}\right ) x -x\) | \(19\) |
norman | \({\mathrm e}^{2 x}-4 \,{\mathrm e}^{x}+\ln \left (\frac {5 x}{2}\right ) x -x\) | \(19\) |
risch | \({\mathrm e}^{2 x}-4 \,{\mathrm e}^{x}+\ln \left (\frac {5 x}{2}\right ) x -x\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 18, normalized size = 0.90 \begin {gather*} x \log \left (\frac {5}{2} \, x\right ) - x + e^{\left (2 \, x\right )} - 4 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.12, size = 17, normalized size = 0.85 \begin {gather*} {\mathrm {e}}^{2\,x}-4\,{\mathrm {e}}^x+x\,\left (\ln \left (\frac {5\,x}{2}\right )-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 19, normalized size = 0.95 \begin {gather*} x \log {\left (\frac {5 x}{2} \right )} - x + e^{2 x} - 4 e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________