3.17.97
Optimal. Leaf size=24
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 23, normalized size of antiderivative = 0.96,
number of steps used = 8, number of rules used = 5, integrand size = 84, = 0.060, Rules used =
{6, 2074, 618, 204, 638}
Antiderivative was successfully verified.
[In]
Int[(25 - 20*x + 5*E*x + 4*x^2 + E^8*x^4 + E^4*(10*x^2 - 4*x^3 - E*x^3))/(E^9*x^5 + E*(25*x - 20*x^2 + 4*x^3)
+ E^5*(10*x^3 - 4*x^4)),x]
[Out]
x/(5 - 2*x + E^4*x^2) + Log[x]/E
Rule 6
Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] && !FreeQ[v, x]
Rule 204
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])
Rule 618
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]
Rule 638
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b*d - 2*a*e + (2*c*d -
b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] - Dist[((2*p + 3)*(2*c*d - b*e))/((p + 1)*(b^2
- 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] && NeQ[b^
2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2]
Rule 2074
Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /; !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 24, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(25 - 20*x + 5*E*x + 4*x^2 + E^8*x^4 + E^4*(10*x^2 - 4*x^3 - E*x^3))/(E^9*x^5 + E*(25*x - 20*x^2 + 4
*x^3) + E^5*(10*x^3 - 4*x^4)),x]
[Out]
((E*x)/(5 - 2*x + E^4*x^2) + Log[x])/E
________________________________________________________________________________________
fricas [A] time = 0.84, size = 38, normalized size = 1.58
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((x^4*exp(2)^4+(-x^3*exp(1)-4*x^3+10*x^2)*exp(2)^2+5*x*exp(1)+4*x^2-20*x+25)/(x^5*exp(1)*exp(2)^4+(-4
*x^4+10*x^3)*exp(1)*exp(2)^2+(4*x^3-20*x^2+25*x)*exp(1)),x, algorithm="fricas")
[Out]
(x*e + (x^2*e^4 - 2*x + 5)*log(x))/(x^2*e^5 - (2*x - 5)*e)
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((x^4*exp(2)^4+(-x^3*exp(1)-4*x^3+10*x^2)*exp(2)^2+5*x*exp(1)+4*x^2-20*x+25)/(x^5*exp(1)*exp(2)^4+(-4
*x^4+10*x^3)*exp(1)*exp(2)^2+(4*x^3-20*x^2+25*x)*exp(1)),x, algorithm="giac")
[Out]
Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Evaluation time: 0.72Not invertible Error: Bad Argument Value
________________________________________________________________________________________
maple [A] time = 0.15, size = 22, normalized size = 0.92
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((x^4*exp(2)^4+(-x^3*exp(1)-4*x^3+10*x^2)*exp(2)^2+5*x*exp(1)+4*x^2-20*x+25)/(x^5*exp(1)*exp(2)^4+(-4*x^4+1
0*x^3)*exp(1)*exp(2)^2+(4*x^3-20*x^2+25*x)*exp(1)),x,method=_RETURNVERBOSE)
[Out]
x/(x^2*exp(4)-2*x+5)+ln(x)*exp(-1)
________________________________________________________________________________________
maxima [A] time = 0.53, size = 21, normalized size = 0.88
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((x^4*exp(2)^4+(-x^3*exp(1)-4*x^3+10*x^2)*exp(2)^2+5*x*exp(1)+4*x^2-20*x+25)/(x^5*exp(1)*exp(2)^4+(-4
*x^4+10*x^3)*exp(1)*exp(2)^2+(4*x^3-20*x^2+25*x)*exp(1)),x, algorithm="maxima")
[Out]
e^(-1)*log(x) + x/(x^2*e^4 - 2*x + 5)
________________________________________________________________________________________
mupad [B] time = 0.18, size = 28, normalized size = 1.17
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((5*x*exp(1) - exp(4)*(x^3*exp(1) - 10*x^2 + 4*x^3) - 20*x + x^4*exp(8) + 4*x^2 + 25)/(exp(1)*(25*x - 20*x^
2 + 4*x^3) + exp(5)*(10*x^3 - 4*x^4) + x^5*exp(9)),x)
[Out]
exp(-1)*log(x) + (x*exp(1))/(5*exp(1) - 2*x*exp(1) + x^2*exp(5))
________________________________________________________________________________________
sympy [A] time = 1.36, size = 19, normalized size = 0.79
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((x**4*exp(2)**4+(-x**3*exp(1)-4*x**3+10*x**2)*exp(2)**2+5*x*exp(1)+4*x**2-20*x+25)/(x**5*exp(1)*exp(
2)**4+(-4*x**4+10*x**3)*exp(1)*exp(2)**2+(4*x**3-20*x**2+25*x)*exp(1)),x)
[Out]
x/(x**2*exp(4) - 2*x + 5) + exp(-1)*log(x)
________________________________________________________________________________________