3.17.98 1010x5x2+ex(5+5x)+ex(5+5x+5x2)log(x)4x24x3+x4+ex(4x22x3)log(x)+e2xx2log2(x)dx

Optimal. Leaf size=20 5(1+x)x(2+xexlog(x))

________________________________________________________________________________________

Rubi [F]  time = 4.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 1010x5x2+ex(5+5x)+ex(5+5x+5x2)log(x)4x24x3+x4+ex(4x22x3)log(x)+e2xx2log2(x)dx

Verification is not applicable to the result.

[In]

Int[(10 - 10*x - 5*x^2 + E^x*(5 + 5*x) + E^x*(5 + 5*x + 5*x^2)*Log[x])/(4*x^2 - 4*x^3 + x^4 + E^x*(4*x^2 - 2*x
^3)*Log[x] + E^(2*x)*x^2*Log[x]^2),x]

[Out]

-10*Defer[Int][(-2 + x - E^x*Log[x])^(-2), x] - 15*Defer[Int][1/(x*(-2 + x - E^x*Log[x])^2), x] + 5*Defer[Int]
[x/(-2 + x - E^x*Log[x])^2, x] - 10*Defer[Int][1/(x^2*Log[x]*(-2 + x - E^x*Log[x])^2), x] - 5*Defer[Int][1/(x*
Log[x]*(-2 + x - E^x*Log[x])^2), x] - 5*Defer[Int][(-2 + x - E^x*Log[x])^(-1), x] - 5*Defer[Int][1/(x^2*(-2 +
x - E^x*Log[x])), x] - 5*Defer[Int][1/(x*(-2 + x - E^x*Log[x])), x] - 5*Defer[Int][1/(x^2*Log[x]*(-2 + x - E^x
*Log[x])), x] - 5*Defer[Int][1/(x*Log[x]*(-2 + x - E^x*Log[x])), x] + 5*Defer[Int][1/(Log[x]*(2 - x + E^x*Log[
x])^2), x]

Rubi steps

integral=5(22xx2+ex(1+x)+ex(1+x+x2)log(x))x2(2x+exlog(x))2dx=522xx2+ex(1+x)+ex(1+x+x2)log(x)x2(2x+exlog(x))2dx=5((1+x)(2+x3xlog(x)+x2log(x))x2log(x)(2+xexlog(x))21+x+log(x)+xlog(x)+x2log(x)x2log(x)(2+xexlog(x)))dx=5(1+x)(2+x3xlog(x)+x2log(x))x2log(x)(2+xexlog(x))2dx51+x+log(x)+xlog(x)+x2log(x)x2log(x)(2+xexlog(x))dx=(5(12+xexlog(x)+1x2(2+xexlog(x))+1x(2+xexlog(x))+1x2log(x)(2+xexlog(x))+1xlog(x)(2+xexlog(x)))dx)+5(2+x3xlog(x)+x2log(x)x2log(x)(2+xexlog(x))2+2+x3xlog(x)+x2log(x)xlog(x)(2+xexlog(x))2)dx=(512+xexlog(x)dx)51x2(2+xexlog(x))dx51x(2+xexlog(x))dx51x2log(x)(2+xexlog(x))dx51xlog(x)(2+xexlog(x))dx+52+x3xlog(x)+x2log(x)x2log(x)(2+xexlog(x))2dx+52+x3xlog(x)+x2log(x)xlog(x)(2+xexlog(x))2dx=(512+xexlog(x)dx)51x2(2+xexlog(x))dx51x(2+xexlog(x))dx51x2log(x)(2+xexlog(x))dx51xlog(x)(2+xexlog(x))dx+5(1(2+xexlog(x))23x(2+xexlog(x))22x2log(x)(2+xexlog(x))2+1xlog(x)(2+xexlog(x))2)dx+5(3(2+xexlog(x))2+x(2+xexlog(x))22xlog(x)(2+xexlog(x))2+1log(x)(2x+exlog(x))2)dx=51(2+xexlog(x))2dx+5x(2+xexlog(x))2dx+51xlog(x)(2+xexlog(x))2dx512+xexlog(x)dx51x2(2+xexlog(x))dx51x(2+xexlog(x))dx51x2log(x)(2+xexlog(x))dx51xlog(x)(2+xexlog(x))dx+51log(x)(2x+exlog(x))2dx101x2log(x)(2+xexlog(x))2dx101xlog(x)(2+xexlog(x))2dx151(2+xexlog(x))2dx151x(2+xexlog(x))2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.60, size = 20, normalized size = 1.00 5(1+x)x(2+xexlog(x))

Antiderivative was successfully verified.

[In]

Integrate[(10 - 10*x - 5*x^2 + E^x*(5 + 5*x) + E^x*(5 + 5*x + 5*x^2)*Log[x])/(4*x^2 - 4*x^3 + x^4 + E^x*(4*x^2
 - 2*x^3)*Log[x] + E^(2*x)*x^2*Log[x]^2),x]

[Out]

(5*(1 + x))/(x*(-2 + x - E^x*Log[x]))

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 22, normalized size = 1.10 5(x+1)xexlog(x)x2+2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*x^2+5*x+5)*exp(x)*log(x)+(5*x+5)*exp(x)-5*x^2-10*x+10)/(x^2*exp(x)^2*log(x)^2+(-2*x^3+4*x^2)*exp
(x)*log(x)+x^4-4*x^3+4*x^2),x, algorithm="fricas")

[Out]

-5*(x + 1)/(x*e^x*log(x) - x^2 + 2*x)

________________________________________________________________________________________

giac [A]  time = 0.30, size = 22, normalized size = 1.10 5(x+1)xexlog(x)x2+2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*x^2+5*x+5)*exp(x)*log(x)+(5*x+5)*exp(x)-5*x^2-10*x+10)/(x^2*exp(x)^2*log(x)^2+(-2*x^3+4*x^2)*exp
(x)*log(x)+x^4-4*x^3+4*x^2),x, algorithm="giac")

[Out]

-5*(x + 1)/(x*e^x*log(x) - x^2 + 2*x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 20, normalized size = 1.00




method result size



risch 5x+5(x2exln(x))x 20



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((5*x^2+5*x+5)*exp(x)*ln(x)+(5*x+5)*exp(x)-5*x^2-10*x+10)/(x^2*exp(x)^2*ln(x)^2+(-2*x^3+4*x^2)*exp(x)*ln(x
)+x^4-4*x^3+4*x^2),x,method=_RETURNVERBOSE)

[Out]

5/(x-2-exp(x)*ln(x))*(x+1)/x

________________________________________________________________________________________

maxima [A]  time = 0.54, size = 22, normalized size = 1.10 5(x+1)xexlog(x)x2+2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*x^2+5*x+5)*exp(x)*log(x)+(5*x+5)*exp(x)-5*x^2-10*x+10)/(x^2*exp(x)^2*log(x)^2+(-2*x^3+4*x^2)*exp
(x)*log(x)+x^4-4*x^3+4*x^2),x, algorithm="maxima")

[Out]

-5*(x + 1)/(x*e^x*log(x) - x^2 + 2*x)

________________________________________________________________________________________

mupad [B]  time = 1.16, size = 68, normalized size = 3.40 5e2x+5xe2xex(5x3+10x2+15x)(exln(x)x+2)(xe2x3x2ex+x3ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x)*(5*x + 5) - 10*x - 5*x^2 + exp(x)*log(x)*(5*x + 5*x^2 + 5) + 10)/(4*x^2 - 4*x^3 + x^4 + x^2*exp(2*
x)*log(x)^2 + exp(x)*log(x)*(4*x^2 - 2*x^3)),x)

[Out]

-(5*exp(2*x) + 5*x*exp(2*x) - exp(x)*(15*x + 10*x^2 - 5*x^3))/((exp(x)*log(x) - x + 2)*(x*exp(2*x) - 3*x^2*exp
(x) + x^3*exp(x)))

________________________________________________________________________________________

sympy [A]  time = 0.39, size = 20, normalized size = 1.00 5x5x2+xexlog(x)+2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*x**2+5*x+5)*exp(x)*ln(x)+(5*x+5)*exp(x)-5*x**2-10*x+10)/(x**2*exp(x)**2*ln(x)**2+(-2*x**3+4*x**2
)*exp(x)*ln(x)+x**4-4*x**3+4*x**2),x)

[Out]

(-5*x - 5)/(-x**2 + x*exp(x)*log(x) + 2*x)

________________________________________________________________________________________