Optimal. Leaf size=38 \[ x-\log (4)+\frac {2}{\frac {1}{2}-25 x^2+5 \left (1+i \pi +\log \left (-\log \left (\frac {\log (4)}{2}\right )\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 26, normalized size of antiderivative = 0.68, number of steps used = 5, number of rules used = 5, integrand size = 118, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {1994, 28, 1814, 21, 8} \begin {gather*} x+\frac {4}{-50 x^2+10 i \pi +11+10 \log (-\log (\log (2)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 21
Rule 28
Rule 1814
Rule 1994
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {121+400 x-1100 x^2+2500 x^4+\left (220-1000 x^2\right ) \left (i \pi +\log \left (-\log \left (\frac {\log (4)}{2}\right )\right )\right )+100 \left (i \pi +\log \left (-\log \left (\frac {\log (4)}{2}\right )\right )\right )^2}{2500 x^4-(11 i-10 \pi +10 i \log (-\log (\log (2))))^2-100 x^2 (11+10 i \pi +10 \log (-\log (\log (2))))} \, dx\\ &=2500 \int \frac {121+400 x-1100 x^2+2500 x^4+\left (220-1000 x^2\right ) \left (i \pi +\log \left (-\log \left (\frac {\log (4)}{2}\right )\right )\right )+100 \left (i \pi +\log \left (-\log \left (\frac {\log (4)}{2}\right )\right )\right )^2}{\left (2500 x^2-50 (11+10 i \pi +10 \log (-\log (\log (2))))\right )^2} \, dx\\ &=\frac {4}{11+10 i \pi -50 x^2+10 \log (-\log (\log (2)))}+\frac {25 \int \frac {2 (11 i-10 \pi +10 i \log (-\log (\log (2))))^2+100 x^2 (11+10 i \pi +10 \log (-\log (\log (2))))}{2500 x^2-50 (11+10 i \pi +10 \log (-\log (\log (2))))} \, dx}{11+10 i \pi +10 \log (-\log (\log (2)))}\\ &=\frac {4}{11+10 i \pi -50 x^2+10 \log (-\log (\log (2)))}+\int 1 \, dx\\ &=x+\frac {4}{11+10 i \pi -50 x^2+10 \log (-\log (\log (2)))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 26, normalized size = 0.68 \begin {gather*} x-\frac {4}{-11-10 i \pi +50 x^2-10 \log (-\log (\log (2)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 33, normalized size = 0.87 \begin {gather*} \frac {50 \, x^{3} - 10 \, x \log \left (\log \left (\log \relax (2)\right )\right ) - 11 \, x - 4}{50 \, x^{2} - 10 \, \log \left (\log \left (\log \relax (2)\right )\right ) - 11} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 19, normalized size = 0.50 \begin {gather*} x - \frac {4}{50 \, x^{2} - 10 \, \log \left (\log \left (\log \relax (2)\right )\right ) - 11} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.54, size = 18, normalized size = 0.47
method | result | size |
risch | \(x +\frac {2}{5 \left (-5 x^{2}+\ln \left (\ln \left (\ln \relax (2)\right )\right )+\frac {11}{10}\right )}\) | \(18\) |
gosper | \(\frac {-50 x^{3}+10 x \ln \left (\ln \left (\ln \relax (2)\right )\right )+11 x +4}{-50 x^{2}+10 \ln \left (\ln \left (\ln \relax (2)\right )\right )+11}\) | \(34\) |
norman | \(\frac {-50 x^{3}+4+\left (10 \ln \left (\ln \left (\ln \relax (2)\right )\right )+11\right ) x}{-50 x^{2}+10 \ln \left (\ln \left (\ln \relax (2)\right )\right )+11}\) | \(34\) |
default | \(x +\frac {8800+8000 \ln \left (\ln \left (\ln \relax (2)\right )\right )}{\left (-2000 \ln \left (\ln \left (\ln \relax (2)\right )\right )-2200\right ) \left (50 x^{2}-10 \ln \left (\ln \left (\ln \relax (2)\right )\right )-11\right )}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 19, normalized size = 0.50 \begin {gather*} x - \frac {4}{50 \, x^{2} - 10 \, \log \left (\log \left (\log \relax (2)\right )\right ) - 11} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 19, normalized size = 0.50 \begin {gather*} x+\frac {4}{-50\,x^2+10\,\ln \left (\ln \left (\ln \relax (2)\right )\right )+11} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 24, normalized size = 0.63 \begin {gather*} x - \frac {4}{50 x^{2} - 11 - 10 \log {\left (- \log {\left (\log {\relax (2 )} \right )} \right )} - 10 i \pi } \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________