3.33.49 265x+512x2+e2+x(256x256x2)+(9512x+e2+x(256+256x))log(4e2x)+(256x+256log(4e2x))log(x+log(4e2x))256x+256log(4e2x)dx

Optimal. Leaf size=27 x(9256+e2+xx+log(x+log(4e2x)))

________________________________________________________________________________________

Rubi [F]  time = 1.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 265x+512x2+e2+x(256x256x2)+(9512x+e2+x(256+256x))log(4e2x)+(256x+256log(4e2x))log(x+log(4e2x))256x+256log(4e2x)dx

Verification is not applicable to the result.

[In]

Int[(265*x + 512*x^2 + E^(-2 + x)*(-256*x - 256*x^2) + (-9 - 512*x + E^(-2 + x)*(256 + 256*x))*Log[4*E^(2*x)]
+ (-256*x + 256*Log[4*E^(2*x)])*Log[-x + Log[4*E^(2*x)]])/(-256*x + 256*Log[4*E^(2*x)]),x]

[Out]

-E^(-2 + x) - (9*x)/256 - x^2 + E^(-2 + x)*(1 + x) - Defer[Int][x/(x - Log[4*E^(2*x)]), x] + Defer[Int][Log[-x
 + Log[4*E^(2*x)]], x]

Rubi steps

integral=265x512x2e2+x(256x256x2)(9512x+e2+x(256+256x))log(4e2x)(256x+256log(4e2x))log(x+log(4e2x))256(xlog(4e2x))dx=1256265x512x2e2+x(256x256x2)(9512x+e2+x(256+256x))log(4e2x)(256x+256log(4e2x))log(x+log(4e2x))xlog(4e2x)dx=1256(256e2+x(1+x)+265x512x2+9log(4e2x)+512xlog(4e2x)+256xlog(x+log(4e2x))256log(4e2x)log(x+log(4e2x))xlog(4e2x))dx=1256265x512x2+9log(4e2x)+512xlog(4e2x)+256xlog(x+log(4e2x))256log(4e2x)log(x+log(4e2x))xlog(4e2x)dx+e2+x(1+x)dx=e2+x(1+x)+1256(265x512x2+9log(4e2x)+512xlog(4e2x)xlog(4e2x)+256log(x+log(4e2x)))dxe2+xdx=e2+x+e2+x(1+x)+1256265x512x2+9log(4e2x)+512xlog(4e2x)xlog(4e2x)dx+log(x+log(4e2x))dx=e2+x+e2+x(1+x)+1256(9512x256xxlog(4e2x))dx+log(x+log(4e2x))dx=e2+x9x256x2+e2+x(1+x)xxlog(4e2x)dx+log(x+log(4e2x))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.20, size = 32, normalized size = 1.19 1256x(9256e2+x+256x256log(x+log(4e2x)))

Antiderivative was successfully verified.

[In]

Integrate[(265*x + 512*x^2 + E^(-2 + x)*(-256*x - 256*x^2) + (-9 - 512*x + E^(-2 + x)*(256 + 256*x))*Log[4*E^(
2*x)] + (-256*x + 256*Log[4*E^(2*x)])*Log[-x + Log[4*E^(2*x)]])/(-256*x + 256*Log[4*E^(2*x)]),x]

[Out]

-1/256*(x*(9 - 256*E^(-2 + x) + 256*x - 256*Log[-x + Log[4*E^(2*x)]]))

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 24, normalized size = 0.89 x2+xe(x2)+xlog(x+2log(2))9256x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((256*log(4*exp(x)^2)-256*x)*log(log(4*exp(x)^2)-x)+((256*x+256)*exp(x-2)-512*x-9)*log(4*exp(x)^2)+(
-256*x^2-256*x)*exp(x-2)+512*x^2+265*x)/(256*log(4*exp(x)^2)-256*x),x, algorithm="fricas")

[Out]

-x^2 + x*e^(x - 2) + x*log(x + 2*log(2)) - 9/256*x

________________________________________________________________________________________

giac [A]  time = 0.20, size = 34, normalized size = 1.26 1256(256x2e2256xe2log(x+2log(2))+9xe2256xex)e(2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((256*log(4*exp(x)^2)-256*x)*log(log(4*exp(x)^2)-x)+((256*x+256)*exp(x-2)-512*x-9)*log(4*exp(x)^2)+(
-256*x^2-256*x)*exp(x-2)+512*x^2+265*x)/(256*log(4*exp(x)^2)-256*x),x, algorithm="giac")

[Out]

-1/256*(256*x^2*e^2 - 256*x*e^2*log(x + 2*log(2)) + 9*x*e^2 - 256*x*e^x)*e^(-2)

________________________________________________________________________________________

maple [C]  time = 0.10, size = 63, normalized size = 2.33




method result size



risch xln(2ln(2)+2ln(ex)iπcsgn(ie2x)(csgn(ie2x)+csgn(iex))22x)x29x256+xex2 63
default x2+503x2562ln(ln(4e2x)x)(ln(ex)x)ln(ln(4e2x)x)(ln(4e2x)2ln(ex))+ln(ln(4e2x)x)(ln(4e2x)x)ln(4e2x)6e2+2xln(4e2x)\expIntegralEi(1,xln(4e2x))+2ex25(2+2xln(4e2x))e2+2xln(4e2x)\expIntegralEi(1,xln(4e2x))+ex2(x2)2(ln(ex)x)ex2((ln(4e2x)2ln(ex))2+4(ln(4e2x)2ln(ex))(ln(ex)x)+4(ln(ex)x)2+4ln(4e2x)8x+4)e2+2xln(4e2x)\expIntegralEi(1,xln(4e2x))(ln(4e2x)2ln(ex))e2+2xln(4e2x)\expIntegralEi(1,xln(4e2x))6(ln(ex)x)e2+2xln(4e2x)\expIntegralEi(1,xln(4e2x))+2ln(ex)e2+2xln(4e2x)\expIntegralEi(1,xln(4e2x))(ln(4e2x)2ln(ex))2e2+2xln(4e2x)\expIntegralEi(1,xln(4e2x))x(ln(4e2x)2ln(ex))+e2+2xln(4e2x)\expIntegralEi(1,xln(4e2x))(ln(4e2x)2ln(ex))2+2(ln(ex)x)(ex2(2+2xln(4e2x))e2+2xln(4e2x)\expIntegralEi(1,xln(4e2x))) 556



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((256*ln(4*exp(x)^2)-256*x)*ln(ln(4*exp(x)^2)-x)+((256*x+256)*exp(x-2)-512*x-9)*ln(4*exp(x)^2)+(-256*x^2-2
56*x)*exp(x-2)+512*x^2+265*x)/(256*ln(4*exp(x)^2)-256*x),x,method=_RETURNVERBOSE)

[Out]

x*ln(2*ln(2)+2*ln(exp(x))-1/2*I*Pi*csgn(I*exp(2*x))*(-csgn(I*exp(2*x))+csgn(I*exp(x)))^2-x)-x^2-9/256*x+x*exp(
x-2)

________________________________________________________________________________________

maxima [B]  time = 0.54, size = 92, normalized size = 3.41 8log(2)2log(x+2log(2))+x21128(256x2e2x(512log(2)137)e2128xex+((1024log(2)2265log(2))e2128xe2)log(x+2log(2)))e(2)4xlog(2)265128log(2)log(x+2log(2))+265256x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((256*log(4*exp(x)^2)-256*x)*log(log(4*exp(x)^2)-x)+((256*x+256)*exp(x-2)-512*x-9)*log(4*exp(x)^2)+(
-256*x^2-256*x)*exp(x-2)+512*x^2+265*x)/(256*log(4*exp(x)^2)-256*x),x, algorithm="maxima")

[Out]

8*log(2)^2*log(x + 2*log(2)) + x^2 - 1/128*(256*x^2*e^2 - x*(512*log(2) - 137)*e^2 - 128*x*e^x + ((1024*log(2)
^2 - 265*log(2))*e^2 - 128*x*e^2)*log(x + 2*log(2)))*e^(-2) - 4*x*log(2) - 265/128*log(2)*log(x + 2*log(2)) +
265/256*x

________________________________________________________________________________________

mupad [B]  time = 2.09, size = 24, normalized size = 0.89 xex29x256x2+xln(x+2ln(2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x - 2)*(256*x + 256*x^2) - 265*x + log(4*exp(2*x))*(512*x - exp(x - 2)*(256*x + 256) + 9) + log(log(4
*exp(2*x)) - x)*(256*x - 256*log(4*exp(2*x))) - 512*x^2)/(256*x - 256*log(4*exp(2*x))),x)

[Out]

x*exp(x - 2) - (9*x)/256 - x^2 + x*log(x + 2*log(2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((256*ln(4*exp(x)**2)-256*x)*ln(ln(4*exp(x)**2)-x)+((256*x+256)*exp(x-2)-512*x-9)*ln(4*exp(x)**2)+(-
256*x**2-256*x)*exp(x-2)+512*x**2+265*x)/(256*ln(4*exp(x)**2)-256*x),x)

[Out]

Timed out

________________________________________________________________________________________