3.33.86 ee2xx(2+e3x(22e2)+e2x(2+2e2)3x2x2+ex(1+e2(12x)+2x)+e2(x+2x2))e5x(1+3e23e4+e6)+e4x(6+e2(129x)+3x3e6x+e4(6+9x))+e3x(1212x3x2+3e6x2+e4(12x9x2)+e2(12+24x+9x2))+e2x(8+12x+6x2+x3e6x3+e2(12x12x23x3)+e4(6x2+3x3))dx

Optimal. Leaf size=29 ee2xx(2+(1e2)(exx))2

________________________________________________________________________________________

Rubi [B]  time = 5.25, antiderivative size = 232, normalized size of antiderivative = 8.00, number of steps used = 1, number of rules used = 1, integrand size = 247, number of rulesintegrand size = 0.004, Rules used = {2288} ee2xx(2x2e2(x2x2)3xex(e2(12x)2x+1)+2)(e2x2e2xx)(3e3x(e6x2+x2+e4(3x2+4x)e2(3x2+8x+4)+4x+4)e2x(e6x3+x3+6x2+3e4(x3+2x2)3e2(x3+4x2+4x)+12x+8)3e4x(e6x+x+e4(3x+2)e2(3x+4)+2)+(1e2)3e5x)

Antiderivative was successfully verified.

[In]

Int[(E^(x/E^(2*x))*(2 + E^(3*x)*(2 - 2*E^2) + E^(2*x)*(-2 + 2*E^2) - 3*x - 2*x^2 + E^x*(-1 + E^2*(1 - 2*x) + 2
*x) + E^2*(-x + 2*x^2)))/(E^(5*x)*(-1 + 3*E^2 - 3*E^4 + E^6) + E^(4*x)*(6 + E^2*(-12 - 9*x) + 3*x - 3*E^6*x +
E^4*(6 + 9*x)) + E^(3*x)*(-12 - 12*x - 3*x^2 + 3*E^6*x^2 + E^4*(-12*x - 9*x^2) + E^2*(12 + 24*x + 9*x^2)) + E^
(2*x)*(8 + 12*x + 6*x^2 + x^3 - E^6*x^3 + E^2*(-12*x - 12*x^2 - 3*x^3) + E^4*(6*x^2 + 3*x^3))),x]

[Out]

-((E^(x/E^(2*x))*(2 - E^x*(1 - E^2*(1 - 2*x) - 2*x) - 3*x - 2*x^2 - E^2*(x - 2*x^2)))/((E^(-2*x) - (2*x)/E^(2*
x))*(E^(5*x)*(1 - E^2)^3 - 3*E^(4*x)*(2 + x - E^6*x + E^4*(2 + 3*x) - E^2*(4 + 3*x)) + 3*E^(3*x)*(4 + 4*x + x^
2 - E^6*x^2 + E^4*(4*x + 3*x^2) - E^2*(4 + 8*x + 3*x^2)) - E^(2*x)*(8 + 12*x + 6*x^2 + x^3 - E^6*x^3 + 3*E^4*(
2*x^2 + x^3) - 3*E^2*(4*x + 4*x^2 + x^3)))))

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

integral=ee2xx(2ex(1e2(12x)2x)3x2x2e2(x2x2))(e2x2e2xx)(e5x(1e2)33e4x(2+xe6x+e4(2+3x)e2(4+3x))+3e3x(4+4x+x2e6x2+e4(4x+3x2)e2(4+8x+3x2))e2x(8+12x+6x2+x3e6x3+3e4(2x2+x3)3e2(4x+4x2+x3)))

________________________________________________________________________________________

Mathematica [A]  time = 0.23, size = 31, normalized size = 1.07 ee2xx(2ex+e2+x+xe2x)2

Antiderivative was successfully verified.

[In]

Integrate[(E^(x/E^(2*x))*(2 + E^(3*x)*(2 - 2*E^2) + E^(2*x)*(-2 + 2*E^2) - 3*x - 2*x^2 + E^x*(-1 + E^2*(1 - 2*
x) + 2*x) + E^2*(-x + 2*x^2)))/(E^(5*x)*(-1 + 3*E^2 - 3*E^4 + E^6) + E^(4*x)*(6 + E^2*(-12 - 9*x) + 3*x - 3*E^
6*x + E^4*(6 + 9*x)) + E^(3*x)*(-12 - 12*x - 3*x^2 + 3*E^6*x^2 + E^4*(-12*x - 9*x^2) + E^2*(12 + 24*x + 9*x^2)
) + E^(2*x)*(8 + 12*x + 6*x^2 + x^3 - E^6*x^3 + E^2*(-12*x - 12*x^2 - 3*x^3) + E^4*(6*x^2 + 3*x^3))),x]

[Out]

E^(x/E^(2*x))/(2 - E^x + E^(2 + x) + x - E^2*x)^2

________________________________________________________________________________________

fricas [B]  time = 0.58, size = 66, normalized size = 2.28 e(xe(2x))x2e4+x22(x2+2x)e2+(e42e2+1)e(2x)2(xe42(x+1)e2+x+2)ex+4x+4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*exp(2)+2)*exp(x)^3+(2*exp(2)-2)*exp(x)^2+((1-2*x)*exp(2)+2*x-1)*exp(x)+(2*x^2-x)*exp(2)-2*x^2-3
*x+2)*exp(x/exp(x)^2)/((exp(2)^3-3*exp(2)^2+3*exp(2)-1)*exp(x)^5+(-3*x*exp(2)^3+(9*x+6)*exp(2)^2+(-9*x-12)*exp
(2)+6+3*x)*exp(x)^4+(3*x^2*exp(2)^3+(-9*x^2-12*x)*exp(2)^2+(9*x^2+24*x+12)*exp(2)-3*x^2-12*x-12)*exp(x)^3+(-x^
3*exp(2)^3+(3*x^3+6*x^2)*exp(2)^2+(-3*x^3-12*x^2-12*x)*exp(2)+x^3+6*x^2+12*x+8)*exp(x)^2),x, algorithm="fricas
")

[Out]

e^(x*e^(-2*x))/(x^2*e^4 + x^2 - 2*(x^2 + 2*x)*e^2 + (e^4 - 2*e^2 + 1)*e^(2*x) - 2*(x*e^4 - 2*(x + 1)*e^2 + x +
 2)*e^x + 4*x + 4)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 (2x2(2x2x)e2+2(e21)e(3x)2(e21)e(2x)+((2x1)e22x+1)ex+3x2)e(xe(2x))(e63e4+3e21)e(5x)3(xe6(3x+2)e4+(3x+4)e2x2)e(4x)+3(x2e6x2(3x2+4x)e4+(3x2+8x+4)e24x4)e(3x)(x3e6x36x23(x3+2x2)e4+3(x3+4x2+4x)e212x8)e(2x)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*exp(2)+2)*exp(x)^3+(2*exp(2)-2)*exp(x)^2+((1-2*x)*exp(2)+2*x-1)*exp(x)+(2*x^2-x)*exp(2)-2*x^2-3
*x+2)*exp(x/exp(x)^2)/((exp(2)^3-3*exp(2)^2+3*exp(2)-1)*exp(x)^5+(-3*x*exp(2)^3+(9*x+6)*exp(2)^2+(-9*x-12)*exp
(2)+6+3*x)*exp(x)^4+(3*x^2*exp(2)^3+(-9*x^2-12*x)*exp(2)^2+(9*x^2+24*x+12)*exp(2)-3*x^2-12*x-12)*exp(x)^3+(-x^
3*exp(2)^3+(3*x^3+6*x^2)*exp(2)^2+(-3*x^3-12*x^2-12*x)*exp(2)+x^3+6*x^2+12*x+8)*exp(x)^2),x, algorithm="giac")

[Out]

integrate(-(2*x^2 - (2*x^2 - x)*e^2 + 2*(e^2 - 1)*e^(3*x) - 2*(e^2 - 1)*e^(2*x) + ((2*x - 1)*e^2 - 2*x + 1)*e^
x + 3*x - 2)*e^(x*e^(-2*x))/((e^6 - 3*e^4 + 3*e^2 - 1)*e^(5*x) - 3*(x*e^6 - (3*x + 2)*e^4 + (3*x + 4)*e^2 - x
- 2)*e^(4*x) + 3*(x^2*e^6 - x^2 - (3*x^2 + 4*x)*e^4 + (3*x^2 + 8*x + 4)*e^2 - 4*x - 4)*e^(3*x) - (x^3*e^6 - x^
3 - 6*x^2 - 3*(x^3 + 2*x^2)*e^4 + 3*(x^3 + 4*x^2 + 4*x)*e^2 - 12*x - 8)*e^(2*x)), x)

________________________________________________________________________________________

maple [F]  time = 0.11, size = 0, normalized size = 0.00 ((2e2+2)e3x+(2e22)e2x+((12x)e2+2x1)ex+(2x2x)e22x23x+2)exe2x(e63e4+3e21)e5x+(3xe6+(9x+6)e4+(9x12)e2+6+3x)e4x+(3x2e6+(9x212x)e4+(9x2+24x+12)e23x212x12)e3x+(x3e6+(3x3+6x2)e4+(3x312x212x)e2+x3+6x2+12x+8)e2xdx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-2*exp(2)+2)*exp(x)^3+(2*exp(2)-2)*exp(x)^2+((1-2*x)*exp(2)+2*x-1)*exp(x)+(2*x^2-x)*exp(2)-2*x^2-3*x+2)*
exp(x/exp(x)^2)/((exp(2)^3-3*exp(2)^2+3*exp(2)-1)*exp(x)^5+(-3*x*exp(2)^3+(9*x+6)*exp(2)^2+(-9*x-12)*exp(2)+6+
3*x)*exp(x)^4+(3*x^2*exp(2)^3+(-9*x^2-12*x)*exp(2)^2+(9*x^2+24*x+12)*exp(2)-3*x^2-12*x-12)*exp(x)^3+(-x^3*exp(
2)^3+(3*x^3+6*x^2)*exp(2)^2+(-3*x^3-12*x^2-12*x)*exp(2)+x^3+6*x^2+12*x+8)*exp(x)^2),x)

[Out]

int(((-2*exp(2)+2)*exp(x)^3+(2*exp(2)-2)*exp(x)^2+((1-2*x)*exp(2)+2*x-1)*exp(x)+(2*x^2-x)*exp(2)-2*x^2-3*x+2)*
exp(x/exp(x)^2)/((exp(2)^3-3*exp(2)^2+3*exp(2)-1)*exp(x)^5+(-3*x*exp(2)^3+(9*x+6)*exp(2)^2+(-9*x-12)*exp(2)+6+
3*x)*exp(x)^4+(3*x^2*exp(2)^3+(-9*x^2-12*x)*exp(2)^2+(9*x^2+24*x+12)*exp(2)-3*x^2-12*x-12)*exp(x)^3+(-x^3*exp(
2)^3+(3*x^3+6*x^2)*exp(2)^2+(-3*x^3-12*x^2-12*x)*exp(2)+x^3+6*x^2+12*x+8)*exp(x)^2),x)

________________________________________________________________________________________

maxima [B]  time = 1.79, size = 64, normalized size = 2.21 e(xe(2x))x2(e42e2+1)4x(e21)+(e42e2+1)e(2x)2(x(e42e2+1)2e2+2)ex+4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*exp(2)+2)*exp(x)^3+(2*exp(2)-2)*exp(x)^2+((1-2*x)*exp(2)+2*x-1)*exp(x)+(2*x^2-x)*exp(2)-2*x^2-3
*x+2)*exp(x/exp(x)^2)/((exp(2)^3-3*exp(2)^2+3*exp(2)-1)*exp(x)^5+(-3*x*exp(2)^3+(9*x+6)*exp(2)^2+(-9*x-12)*exp
(2)+6+3*x)*exp(x)^4+(3*x^2*exp(2)^3+(-9*x^2-12*x)*exp(2)^2+(9*x^2+24*x+12)*exp(2)-3*x^2-12*x-12)*exp(x)^3+(-x^
3*exp(2)^3+(3*x^3+6*x^2)*exp(2)^2+(-3*x^3-12*x^2-12*x)*exp(2)+x^3+6*x^2+12*x+8)*exp(x)^2),x, algorithm="maxima
")

[Out]

e^(x*e^(-2*x))/(x^2*(e^4 - 2*e^2 + 1) - 4*x*(e^2 - 1) + (e^4 - 2*e^2 + 1)*e^(2*x) - 2*(x*(e^4 - 2*e^2 + 1) - 2
*e^2 + 2)*e^x + 4)

________________________________________________________________________________________

mupad [B]  time = 3.39, size = 67, normalized size = 2.31 exe2x(e21)2(e2x+4(e21)22xex+x2x(4e24)(e21)2+ex(4e24)(e21)2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(x*exp(-2*x))*(3*x + exp(x)*(exp(2)*(2*x - 1) - 2*x + 1) - exp(2*x)*(2*exp(2) - 2) + exp(3*x)*(2*exp(
2) - 2) + exp(2)*(x - 2*x^2) + 2*x^2 - 2))/(exp(4*x)*(3*x - 3*x*exp(6) + exp(4)*(9*x + 6) - exp(2)*(9*x + 12)
+ 6) - exp(3*x)*(12*x + exp(4)*(12*x + 9*x^2) - exp(2)*(24*x + 9*x^2 + 12) - 3*x^2*exp(6) + 3*x^2 + 12) + exp(
2*x)*(12*x - exp(2)*(12*x + 12*x^2 + 3*x^3) + exp(4)*(6*x^2 + 3*x^3) - x^3*exp(6) + 6*x^2 + x^3 + 8) + exp(5*x
)*(3*exp(2) - 3*exp(4) + exp(6) - 1)),x)

[Out]

exp(x*exp(-2*x))/((exp(2) - 1)^2*(exp(2*x) + 4/(exp(2) - 1)^2 - 2*x*exp(x) + x^2 - (x*(4*exp(2) - 4))/(exp(2)
- 1)^2 + (exp(x)*(4*exp(2) - 4))/(exp(2) - 1)^2))

________________________________________________________________________________________

sympy [B]  time = 1.66, size = 102, normalized size = 3.52 exe2x2x2e2+x2+x2e42xe4ex2xex+4xe2ex4xe2+4x2e2e2x+e2x+e4e2x4ex+4e2ex+4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-2*exp(2)+2)*exp(x)**3+(2*exp(2)-2)*exp(x)**2+((1-2*x)*exp(2)+2*x-1)*exp(x)+(2*x**2-x)*exp(2)-2*x*
*2-3*x+2)*exp(x/exp(x)**2)/((exp(2)**3-3*exp(2)**2+3*exp(2)-1)*exp(x)**5+(-3*x*exp(2)**3+(9*x+6)*exp(2)**2+(-9
*x-12)*exp(2)+6+3*x)*exp(x)**4+(3*x**2*exp(2)**3+(-9*x**2-12*x)*exp(2)**2+(9*x**2+24*x+12)*exp(2)-3*x**2-12*x-
12)*exp(x)**3+(-x**3*exp(2)**3+(3*x**3+6*x**2)*exp(2)**2+(-3*x**3-12*x**2-12*x)*exp(2)+x**3+6*x**2+12*x+8)*exp
(x)**2),x)

[Out]

exp(x*exp(-2*x))/(-2*x**2*exp(2) + x**2 + x**2*exp(4) - 2*x*exp(4)*exp(x) - 2*x*exp(x) + 4*x*exp(2)*exp(x) - 4
*x*exp(2) + 4*x - 2*exp(2)*exp(2*x) + exp(2*x) + exp(4)*exp(2*x) - 4*exp(x) + 4*exp(2)*exp(x) + 4)

________________________________________________________________________________________