Optimal. Leaf size=29 \[ \frac {e^{e^{-2 x} x}}{\left (-2+\left (1-e^2\right ) \left (e^x-x\right )\right )^2} \]
________________________________________________________________________________________
Rubi [B] time = 5.25, antiderivative size = 232, normalized size of antiderivative = 8.00, number of steps used = 1, number of rules used = 1, integrand size = 247, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.004, Rules used = {2288} \begin {gather*} -\frac {e^{e^{-2 x} x} \left (-2 x^2-e^2 \left (x-2 x^2\right )-3 x-e^x \left (-e^2 (1-2 x)-2 x+1\right )+2\right )}{\left (e^{-2 x}-2 e^{-2 x} x\right ) \left (3 e^{3 x} \left (-e^6 x^2+x^2+e^4 \left (3 x^2+4 x\right )-e^2 \left (3 x^2+8 x+4\right )+4 x+4\right )-e^{2 x} \left (-e^6 x^3+x^3+6 x^2+3 e^4 \left (x^3+2 x^2\right )-3 e^2 \left (x^3+4 x^2+4 x\right )+12 x+8\right )-3 e^{4 x} \left (-e^6 x+x+e^4 (3 x+2)-e^2 (3 x+4)+2\right )+\left (1-e^2\right )^3 e^{5 x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {e^{e^{-2 x} x} \left (2-e^x \left (1-e^2 (1-2 x)-2 x\right )-3 x-2 x^2-e^2 \left (x-2 x^2\right )\right )}{\left (e^{-2 x}-2 e^{-2 x} x\right ) \left (e^{5 x} \left (1-e^2\right )^3-3 e^{4 x} \left (2+x-e^6 x+e^4 (2+3 x)-e^2 (4+3 x)\right )+3 e^{3 x} \left (4+4 x+x^2-e^6 x^2+e^4 \left (4 x+3 x^2\right )-e^2 \left (4+8 x+3 x^2\right )\right )-e^{2 x} \left (8+12 x+6 x^2+x^3-e^6 x^3+3 e^4 \left (2 x^2+x^3\right )-3 e^2 \left (4 x+4 x^2+x^3\right )\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 31, normalized size = 1.07 \begin {gather*} \frac {e^{e^{-2 x} x}}{\left (2-e^x+e^{2+x}+x-e^2 x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 66, normalized size = 2.28 \begin {gather*} \frac {e^{\left (x e^{\left (-2 \, x\right )}\right )}}{x^{2} e^{4} + x^{2} - 2 \, {\left (x^{2} + 2 \, x\right )} e^{2} + {\left (e^{4} - 2 \, e^{2} + 1\right )} e^{\left (2 \, x\right )} - 2 \, {\left (x e^{4} - 2 \, {\left (x + 1\right )} e^{2} + x + 2\right )} e^{x} + 4 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (2 \, x^{2} - {\left (2 \, x^{2} - x\right )} e^{2} + 2 \, {\left (e^{2} - 1\right )} e^{\left (3 \, x\right )} - 2 \, {\left (e^{2} - 1\right )} e^{\left (2 \, x\right )} + {\left ({\left (2 \, x - 1\right )} e^{2} - 2 \, x + 1\right )} e^{x} + 3 \, x - 2\right )} e^{\left (x e^{\left (-2 \, x\right )}\right )}}{{\left (e^{6} - 3 \, e^{4} + 3 \, e^{2} - 1\right )} e^{\left (5 \, x\right )} - 3 \, {\left (x e^{6} - {\left (3 \, x + 2\right )} e^{4} + {\left (3 \, x + 4\right )} e^{2} - x - 2\right )} e^{\left (4 \, x\right )} + 3 \, {\left (x^{2} e^{6} - x^{2} - {\left (3 \, x^{2} + 4 \, x\right )} e^{4} + {\left (3 \, x^{2} + 8 \, x + 4\right )} e^{2} - 4 \, x - 4\right )} e^{\left (3 \, x\right )} - {\left (x^{3} e^{6} - x^{3} - 6 \, x^{2} - 3 \, {\left (x^{3} + 2 \, x^{2}\right )} e^{4} + 3 \, {\left (x^{3} + 4 \, x^{2} + 4 \, x\right )} e^{2} - 12 \, x - 8\right )} e^{\left (2 \, x\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.11, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (-2 \,{\mathrm e}^{2}+2\right ) {\mathrm e}^{3 x}+\left (2 \,{\mathrm e}^{2}-2\right ) {\mathrm e}^{2 x}+\left (\left (1-2 x \right ) {\mathrm e}^{2}+2 x -1\right ) {\mathrm e}^{x}+\left (2 x^{2}-x \right ) {\mathrm e}^{2}-2 x^{2}-3 x +2\right ) {\mathrm e}^{x \,{\mathrm e}^{-2 x}}}{\left ({\mathrm e}^{6}-3 \,{\mathrm e}^{4}+3 \,{\mathrm e}^{2}-1\right ) {\mathrm e}^{5 x}+\left (-3 x \,{\mathrm e}^{6}+\left (9 x +6\right ) {\mathrm e}^{4}+\left (-9 x -12\right ) {\mathrm e}^{2}+6+3 x \right ) {\mathrm e}^{4 x}+\left (3 x^{2} {\mathrm e}^{6}+\left (-9 x^{2}-12 x \right ) {\mathrm e}^{4}+\left (9 x^{2}+24 x +12\right ) {\mathrm e}^{2}-3 x^{2}-12 x -12\right ) {\mathrm e}^{3 x}+\left (-x^{3} {\mathrm e}^{6}+\left (3 x^{3}+6 x^{2}\right ) {\mathrm e}^{4}+\left (-3 x^{3}-12 x^{2}-12 x \right ) {\mathrm e}^{2}+x^{3}+6 x^{2}+12 x +8\right ) {\mathrm e}^{2 x}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.79, size = 64, normalized size = 2.21 \begin {gather*} \frac {e^{\left (x e^{\left (-2 \, x\right )}\right )}}{x^{2} {\left (e^{4} - 2 \, e^{2} + 1\right )} - 4 \, x {\left (e^{2} - 1\right )} + {\left (e^{4} - 2 \, e^{2} + 1\right )} e^{\left (2 \, x\right )} - 2 \, {\left (x {\left (e^{4} - 2 \, e^{2} + 1\right )} - 2 \, e^{2} + 2\right )} e^{x} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.39, size = 67, normalized size = 2.31 \begin {gather*} \frac {{\mathrm {e}}^{x\,{\mathrm {e}}^{-2\,x}}}{{\left ({\mathrm {e}}^2-1\right )}^2\,\left ({\mathrm {e}}^{2\,x}+\frac {4}{{\left ({\mathrm {e}}^2-1\right )}^2}-2\,x\,{\mathrm {e}}^x+x^2-\frac {x\,\left (4\,{\mathrm {e}}^2-4\right )}{{\left ({\mathrm {e}}^2-1\right )}^2}+\frac {{\mathrm {e}}^x\,\left (4\,{\mathrm {e}}^2-4\right )}{{\left ({\mathrm {e}}^2-1\right )}^2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.66, size = 102, normalized size = 3.52 \begin {gather*} \frac {e^{x e^{- 2 x}}}{- 2 x^{2} e^{2} + x^{2} + x^{2} e^{4} - 2 x e^{4} e^{x} - 2 x e^{x} + 4 x e^{2} e^{x} - 4 x e^{2} + 4 x - 2 e^{2} e^{2 x} + e^{2 x} + e^{4} e^{2 x} - 4 e^{x} + 4 e^{2} e^{x} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________