3.33.86
Optimal. Leaf size=29
________________________________________________________________________________________
Rubi [B] time = 5.25, antiderivative size = 232, normalized size of antiderivative = 8.00,
number of steps used = 1, number of rules used = 1, integrand size = 247, = 0.004, Rules used
= {2288}
Antiderivative was successfully verified.
[In]
Int[(E^(x/E^(2*x))*(2 + E^(3*x)*(2 - 2*E^2) + E^(2*x)*(-2 + 2*E^2) - 3*x - 2*x^2 + E^x*(-1 + E^2*(1 - 2*x) + 2
*x) + E^2*(-x + 2*x^2)))/(E^(5*x)*(-1 + 3*E^2 - 3*E^4 + E^6) + E^(4*x)*(6 + E^2*(-12 - 9*x) + 3*x - 3*E^6*x +
E^4*(6 + 9*x)) + E^(3*x)*(-12 - 12*x - 3*x^2 + 3*E^6*x^2 + E^4*(-12*x - 9*x^2) + E^2*(12 + 24*x + 9*x^2)) + E^
(2*x)*(8 + 12*x + 6*x^2 + x^3 - E^6*x^3 + E^2*(-12*x - 12*x^2 - 3*x^3) + E^4*(6*x^2 + 3*x^3))),x]
[Out]
-((E^(x/E^(2*x))*(2 - E^x*(1 - E^2*(1 - 2*x) - 2*x) - 3*x - 2*x^2 - E^2*(x - 2*x^2)))/((E^(-2*x) - (2*x)/E^(2*
x))*(E^(5*x)*(1 - E^2)^3 - 3*E^(4*x)*(2 + x - E^6*x + E^4*(2 + 3*x) - E^2*(4 + 3*x)) + 3*E^(3*x)*(4 + 4*x + x^
2 - E^6*x^2 + E^4*(4*x + 3*x^2) - E^2*(4 + 8*x + 3*x^2)) - E^(2*x)*(8 + 12*x + 6*x^2 + x^3 - E^6*x^3 + 3*E^4*(
2*x^2 + x^3) - 3*E^2*(4*x + 4*x^2 + x^3)))))
Rule 2288
Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 31, normalized size = 1.07
Antiderivative was successfully verified.
[In]
Integrate[(E^(x/E^(2*x))*(2 + E^(3*x)*(2 - 2*E^2) + E^(2*x)*(-2 + 2*E^2) - 3*x - 2*x^2 + E^x*(-1 + E^2*(1 - 2*
x) + 2*x) + E^2*(-x + 2*x^2)))/(E^(5*x)*(-1 + 3*E^2 - 3*E^4 + E^6) + E^(4*x)*(6 + E^2*(-12 - 9*x) + 3*x - 3*E^
6*x + E^4*(6 + 9*x)) + E^(3*x)*(-12 - 12*x - 3*x^2 + 3*E^6*x^2 + E^4*(-12*x - 9*x^2) + E^2*(12 + 24*x + 9*x^2)
) + E^(2*x)*(8 + 12*x + 6*x^2 + x^3 - E^6*x^3 + E^2*(-12*x - 12*x^2 - 3*x^3) + E^4*(6*x^2 + 3*x^3))),x]
[Out]
E^(x/E^(2*x))/(2 - E^x + E^(2 + x) + x - E^2*x)^2
________________________________________________________________________________________
fricas [B] time = 0.58, size = 66, normalized size = 2.28
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*exp(2)+2)*exp(x)^3+(2*exp(2)-2)*exp(x)^2+((1-2*x)*exp(2)+2*x-1)*exp(x)+(2*x^2-x)*exp(2)-2*x^2-3
*x+2)*exp(x/exp(x)^2)/((exp(2)^3-3*exp(2)^2+3*exp(2)-1)*exp(x)^5+(-3*x*exp(2)^3+(9*x+6)*exp(2)^2+(-9*x-12)*exp
(2)+6+3*x)*exp(x)^4+(3*x^2*exp(2)^3+(-9*x^2-12*x)*exp(2)^2+(9*x^2+24*x+12)*exp(2)-3*x^2-12*x-12)*exp(x)^3+(-x^
3*exp(2)^3+(3*x^3+6*x^2)*exp(2)^2+(-3*x^3-12*x^2-12*x)*exp(2)+x^3+6*x^2+12*x+8)*exp(x)^2),x, algorithm="fricas
")
[Out]
e^(x*e^(-2*x))/(x^2*e^4 + x^2 - 2*(x^2 + 2*x)*e^2 + (e^4 - 2*e^2 + 1)*e^(2*x) - 2*(x*e^4 - 2*(x + 1)*e^2 + x +
2)*e^x + 4*x + 4)
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*exp(2)+2)*exp(x)^3+(2*exp(2)-2)*exp(x)^2+((1-2*x)*exp(2)+2*x-1)*exp(x)+(2*x^2-x)*exp(2)-2*x^2-3
*x+2)*exp(x/exp(x)^2)/((exp(2)^3-3*exp(2)^2+3*exp(2)-1)*exp(x)^5+(-3*x*exp(2)^3+(9*x+6)*exp(2)^2+(-9*x-12)*exp
(2)+6+3*x)*exp(x)^4+(3*x^2*exp(2)^3+(-9*x^2-12*x)*exp(2)^2+(9*x^2+24*x+12)*exp(2)-3*x^2-12*x-12)*exp(x)^3+(-x^
3*exp(2)^3+(3*x^3+6*x^2)*exp(2)^2+(-3*x^3-12*x^2-12*x)*exp(2)+x^3+6*x^2+12*x+8)*exp(x)^2),x, algorithm="giac")
[Out]
integrate(-(2*x^2 - (2*x^2 - x)*e^2 + 2*(e^2 - 1)*e^(3*x) - 2*(e^2 - 1)*e^(2*x) + ((2*x - 1)*e^2 - 2*x + 1)*e^
x + 3*x - 2)*e^(x*e^(-2*x))/((e^6 - 3*e^4 + 3*e^2 - 1)*e^(5*x) - 3*(x*e^6 - (3*x + 2)*e^4 + (3*x + 4)*e^2 - x
- 2)*e^(4*x) + 3*(x^2*e^6 - x^2 - (3*x^2 + 4*x)*e^4 + (3*x^2 + 8*x + 4)*e^2 - 4*x - 4)*e^(3*x) - (x^3*e^6 - x^
3 - 6*x^2 - 3*(x^3 + 2*x^2)*e^4 + 3*(x^3 + 4*x^2 + 4*x)*e^2 - 12*x - 8)*e^(2*x)), x)
________________________________________________________________________________________
maple [F] time = 0.11, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-2*exp(2)+2)*exp(x)^3+(2*exp(2)-2)*exp(x)^2+((1-2*x)*exp(2)+2*x-1)*exp(x)+(2*x^2-x)*exp(2)-2*x^2-3*x+2)*
exp(x/exp(x)^2)/((exp(2)^3-3*exp(2)^2+3*exp(2)-1)*exp(x)^5+(-3*x*exp(2)^3+(9*x+6)*exp(2)^2+(-9*x-12)*exp(2)+6+
3*x)*exp(x)^4+(3*x^2*exp(2)^3+(-9*x^2-12*x)*exp(2)^2+(9*x^2+24*x+12)*exp(2)-3*x^2-12*x-12)*exp(x)^3+(-x^3*exp(
2)^3+(3*x^3+6*x^2)*exp(2)^2+(-3*x^3-12*x^2-12*x)*exp(2)+x^3+6*x^2+12*x+8)*exp(x)^2),x)
[Out]
int(((-2*exp(2)+2)*exp(x)^3+(2*exp(2)-2)*exp(x)^2+((1-2*x)*exp(2)+2*x-1)*exp(x)+(2*x^2-x)*exp(2)-2*x^2-3*x+2)*
exp(x/exp(x)^2)/((exp(2)^3-3*exp(2)^2+3*exp(2)-1)*exp(x)^5+(-3*x*exp(2)^3+(9*x+6)*exp(2)^2+(-9*x-12)*exp(2)+6+
3*x)*exp(x)^4+(3*x^2*exp(2)^3+(-9*x^2-12*x)*exp(2)^2+(9*x^2+24*x+12)*exp(2)-3*x^2-12*x-12)*exp(x)^3+(-x^3*exp(
2)^3+(3*x^3+6*x^2)*exp(2)^2+(-3*x^3-12*x^2-12*x)*exp(2)+x^3+6*x^2+12*x+8)*exp(x)^2),x)
________________________________________________________________________________________
maxima [B] time = 1.79, size = 64, normalized size = 2.21
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*exp(2)+2)*exp(x)^3+(2*exp(2)-2)*exp(x)^2+((1-2*x)*exp(2)+2*x-1)*exp(x)+(2*x^2-x)*exp(2)-2*x^2-3
*x+2)*exp(x/exp(x)^2)/((exp(2)^3-3*exp(2)^2+3*exp(2)-1)*exp(x)^5+(-3*x*exp(2)^3+(9*x+6)*exp(2)^2+(-9*x-12)*exp
(2)+6+3*x)*exp(x)^4+(3*x^2*exp(2)^3+(-9*x^2-12*x)*exp(2)^2+(9*x^2+24*x+12)*exp(2)-3*x^2-12*x-12)*exp(x)^3+(-x^
3*exp(2)^3+(3*x^3+6*x^2)*exp(2)^2+(-3*x^3-12*x^2-12*x)*exp(2)+x^3+6*x^2+12*x+8)*exp(x)^2),x, algorithm="maxima
")
[Out]
e^(x*e^(-2*x))/(x^2*(e^4 - 2*e^2 + 1) - 4*x*(e^2 - 1) + (e^4 - 2*e^2 + 1)*e^(2*x) - 2*(x*(e^4 - 2*e^2 + 1) - 2
*e^2 + 2)*e^x + 4)
________________________________________________________________________________________
mupad [B] time = 3.39, size = 67, normalized size = 2.31
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(x*exp(-2*x))*(3*x + exp(x)*(exp(2)*(2*x - 1) - 2*x + 1) - exp(2*x)*(2*exp(2) - 2) + exp(3*x)*(2*exp(
2) - 2) + exp(2)*(x - 2*x^2) + 2*x^2 - 2))/(exp(4*x)*(3*x - 3*x*exp(6) + exp(4)*(9*x + 6) - exp(2)*(9*x + 12)
+ 6) - exp(3*x)*(12*x + exp(4)*(12*x + 9*x^2) - exp(2)*(24*x + 9*x^2 + 12) - 3*x^2*exp(6) + 3*x^2 + 12) + exp(
2*x)*(12*x - exp(2)*(12*x + 12*x^2 + 3*x^3) + exp(4)*(6*x^2 + 3*x^3) - x^3*exp(6) + 6*x^2 + x^3 + 8) + exp(5*x
)*(3*exp(2) - 3*exp(4) + exp(6) - 1)),x)
[Out]
exp(x*exp(-2*x))/((exp(2) - 1)^2*(exp(2*x) + 4/(exp(2) - 1)^2 - 2*x*exp(x) + x^2 - (x*(4*exp(2) - 4))/(exp(2)
- 1)^2 + (exp(x)*(4*exp(2) - 4))/(exp(2) - 1)^2))
________________________________________________________________________________________
sympy [B] time = 1.66, size = 102, normalized size = 3.52
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-2*exp(2)+2)*exp(x)**3+(2*exp(2)-2)*exp(x)**2+((1-2*x)*exp(2)+2*x-1)*exp(x)+(2*x**2-x)*exp(2)-2*x*
*2-3*x+2)*exp(x/exp(x)**2)/((exp(2)**3-3*exp(2)**2+3*exp(2)-1)*exp(x)**5+(-3*x*exp(2)**3+(9*x+6)*exp(2)**2+(-9
*x-12)*exp(2)+6+3*x)*exp(x)**4+(3*x**2*exp(2)**3+(-9*x**2-12*x)*exp(2)**2+(9*x**2+24*x+12)*exp(2)-3*x**2-12*x-
12)*exp(x)**3+(-x**3*exp(2)**3+(3*x**3+6*x**2)*exp(2)**2+(-3*x**3-12*x**2-12*x)*exp(2)+x**3+6*x**2+12*x+8)*exp
(x)**2),x)
[Out]
exp(x*exp(-2*x))/(-2*x**2*exp(2) + x**2 + x**2*exp(4) - 2*x*exp(4)*exp(x) - 2*x*exp(x) + 4*x*exp(2)*exp(x) - 4
*x*exp(2) + 4*x - 2*exp(2)*exp(2*x) + exp(2*x) + exp(4)*exp(2*x) - 4*exp(x) + 4*exp(2)*exp(x) + 4)
________________________________________________________________________________________