3.33.87 ex(1212exx+x2+e3(13x3x2+x3)+(1+e3x)log(3)+(13x+3x2x3xlog(3))log(x))4xdx

Optimal. Leaf size=32 (3+ex(3+14(x+x2+log(3))))(e3+log(x))

________________________________________________________________________________________

Rubi [B]  time = 2.14, antiderivative size = 157, normalized size of antiderivative = 4.91, number of steps used = 21, number of rules used = 8, integrand size = 73, number of rulesintegrand size = 0.110, Rules used = {12, 6742, 2199, 2176, 2194, 2178, 2196, 2554} 14e3xx2+14exx2log(x)12e3xx+exx414(13e3)exxe3x214(13e3)ex14exxlog(x)14exlog(x)+14ex(13+log(3))log(x)3log(x)+14ex(1e3(13+log(3)))

Antiderivative was successfully verified.

[In]

Int[(12 - 12*E^x - x + x^2 + E^3*(13*x - 3*x^2 + x^3) + (1 + E^3*x)*Log[3] + (-13*x + 3*x^2 - x^3 - x*Log[3])*
Log[x])/(4*E^x*x),x]

[Out]

-1/2*E^(3 - x) - (1 - 3*E^3)/(4*E^x) - (E^(3 - x)*x)/2 + x/(4*E^x) - ((1 - 3*E^3)*x)/(4*E^x) - (E^(3 - x)*x^2)
/4 + (1 - E^3*(13 + Log[3]))/(4*E^x) - 3*Log[x] - Log[x]/(4*E^x) - (x*Log[x])/(4*E^x) + (x^2*Log[x])/(4*E^x) +
 ((13 + Log[3])*Log[x])/(4*E^x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2196

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !$UseGamma === True

Rule 2199

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] &&  !$UseGamma === True

Rule 2554

Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[(w*D[u, x]
)/u, x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=14ex(1212exx+x2+e3(13x3x2+x3)+(1+e3x)log(3)+(13x+3x2x3xlog(3))log(x))xdx=14(12x+ex((13e3)x2+e3x3+12(1+log(3)12)x(1e3(13+log(3)))+3x2log(x)x3log(x)13x(1+log(3)13)log(x))x)dx=3log(x)+14ex((13e3)x2+e3x3+12(1+log(3)12)x(1e3(13+log(3)))+3x2log(x)x3log(x)13x(1+log(3)13)log(x))xdx=3log(x)+14(ex(12+(13e3)x2+e3x3+log(3)x(1e3(13+log(3))))xex(133x+x2+log(3))log(x))dx=3log(x)+14ex(12+(13e3)x2+e3x3+log(3)x(1e3(13+log(3))))xdx14ex(133x+x2+log(3))log(x)dx=3log(x)14exlog(x)14exxlog(x)+14exx2log(x)+14ex(13+log(3))log(x)+14ex(12+xx2log(3))xdx+14(ex(13e3)x+e3xx2+ex(12+log(3))x+ex(1+e3(13+log(3))))dx=3log(x)14exlog(x)14exxlog(x)+14exx2log(x)+14ex(13+log(3))log(x)+14e3xx2dx+14(exexx+ex(12log(3))x)dx+14(13e3)exxdx+14(12+log(3))exxdx+14(1+e3(13+log(3)))exdx=14ex(13e3)x14e3xx2+14Ei(x)(12+log(3))+14ex(1e3(13+log(3)))3log(x)14exlog(x)14exxlog(x)+14exx2log(x)+14ex(13+log(3))log(x)+14exdx14exxdx+12e3xxdx+14(13e3)exdx+14(12log(3))exxdx=ex414ex(13e3)12e3xx+exx414ex(13e3)x14e3xx2+14ex(1e3(13+log(3)))3log(x)14exlog(x)14exxlog(x)+14exx2log(x)+14ex(13+log(3))log(x)14exdx+12e3xdx=e3x214ex(13e3)12e3xx+exx414ex(13e3)x14e3xx2+14ex(1e3(13+log(3)))3log(x)14exlog(x)14exxlog(x)+14exx2log(x)+14ex(13+log(3))log(x)

________________________________________________________________________________________

Mathematica [A]  time = 1.84, size = 43, normalized size = 1.34 14ex(e3(12x+x2+log(3))+(1212exx+x2+log(3))log(x))

Antiderivative was successfully verified.

[In]

Integrate[(12 - 12*E^x - x + x^2 + E^3*(13*x - 3*x^2 + x^3) + (1 + E^3*x)*Log[3] + (-13*x + 3*x^2 - x^3 - x*Lo
g[3])*Log[x])/(4*E^x*x),x]

[Out]

(-(E^3*(12 - x + x^2 + Log[3])) + (12 - 12*E^x - x + x^2 + Log[3])*Log[x])/(4*E^x)

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 41, normalized size = 1.28 14((x2x+12)e3+e3log(3)(x2x12ex+log(3)+12)log(x))e(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((-x*log(3)-x^3+3*x^2-13*x)*log(x)-12*exp(x)+(x*exp(3)+1)*log(3)+(x^3-3*x^2+13*x)*exp(3)+x^2-x+1
2)/exp(x)/x,x, algorithm="fricas")

[Out]

-1/4*((x^2 - x + 12)*e^3 + e^3*log(3) - (x^2 - x - 12*e^x + log(3) + 12)*log(x))*e^(-x)

________________________________________________________________________________________

giac [B]  time = 0.19, size = 81, normalized size = 2.53 14x2e(x)log(x)14x2e(x+3)14xe(x)log(x)+14e(x)log(3)log(x)+14xe(x+3)14e(x+3)log(3)+3e(x)log(x)3e(x+3)3log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((-x*log(3)-x^3+3*x^2-13*x)*log(x)-12*exp(x)+(x*exp(3)+1)*log(3)+(x^3-3*x^2+13*x)*exp(3)+x^2-x+1
2)/exp(x)/x,x, algorithm="giac")

[Out]

1/4*x^2*e^(-x)*log(x) - 1/4*x^2*e^(-x + 3) - 1/4*x*e^(-x)*log(x) + 1/4*e^(-x)*log(3)*log(x) + 1/4*x*e^(-x + 3)
 - 1/4*e^(-x + 3)*log(3) + 3*e^(-x)*log(x) - 3*e^(-x + 3) - 3*log(x)

________________________________________________________________________________________

maple [A]  time = 0.10, size = 52, normalized size = 1.62




method result size



default (xe3+x2ln(x)+(ln(3)+12)ln(x)xln(x)x2e312e3e3ln(3))ex43ln(x) 52
risch (x2+ln(3)x+12)exln(x)4(x2e3+12exln(x)+e3ln(3)xe3+12e3)ex4 53
norman ((ln(3)4+3)ln(x)3exln(x)+xe34xln(x)4x2e34+x2ln(x)43e3e3ln(3)4)ex 56



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/4*((-x*ln(3)-x^3+3*x^2-13*x)*ln(x)-12*exp(x)+(x*exp(3)+1)*ln(3)+(x^3-3*x^2+13*x)*exp(3)+x^2-x+12)/exp(x)
/x,x,method=_RETURNVERBOSE)

[Out]

1/4*(x*exp(3)+x^2*ln(x)+(ln(3)+12)*ln(x)-x*ln(x)-x^2*exp(3)-12*exp(3)-exp(3)*ln(3))/exp(x)-3*ln(x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 14(x2x1)e(x)log(x)+14e(x)log(3)log(x)14(x2e3+2xe3+2e3)e(x)+34(xe3+e3)e(x)14(x+1)e(x)14e(x+3)log(3)+134e(x)log(x)14Ei(x)+14e(x)134e(x+3)14(x2x1)e(x)xdx3log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((-x*log(3)-x^3+3*x^2-13*x)*log(x)-12*exp(x)+(x*exp(3)+1)*log(3)+(x^3-3*x^2+13*x)*exp(3)+x^2-x+1
2)/exp(x)/x,x, algorithm="maxima")

[Out]

1/4*(x^2 - x - 1)*e^(-x)*log(x) + 1/4*e^(-x)*log(3)*log(x) - 1/4*(x^2*e^3 + 2*x*e^3 + 2*e^3)*e^(-x) + 3/4*(x*e
^3 + e^3)*e^(-x) - 1/4*(x + 1)*e^(-x) - 1/4*e^(-x + 3)*log(3) + 13/4*e^(-x)*log(x) - 1/4*Ei(-x) + 1/4*e^(-x) -
 13/4*e^(-x + 3) - 1/4*integrate((x^2 - x - 1)*e^(-x)/x, x) - 3*log(x)

________________________________________________________________________________________

mupad [B]  time = 2.13, size = 59, normalized size = 1.84 xex(e3ln(x))4ex(12exln(x)ln(x)(ln(3)+12)+e3(ln(3)+12))4x2ex(e3ln(x))4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-x)*((exp(3)*(13*x - 3*x^2 + x^3))/4 - 3*exp(x) - x/4 + (log(3)*(x*exp(3) + 1))/4 - (log(x)*(13*x + x
*log(3) - 3*x^2 + x^3))/4 + x^2/4 + 3))/x,x)

[Out]

(x*exp(-x)*(exp(3) - log(x)))/4 - (exp(-x)*(12*exp(x)*log(x) - log(x)*(log(3) + 12) + exp(3)*(log(3) + 12)))/4
 - (x^2*exp(-x)*(exp(3) - log(x)))/4

________________________________________________________________________________________

sympy [B]  time = 0.60, size = 56, normalized size = 1.75 (x2log(x)x2e3xlog(x)+xe3+log(3)log(x)+12log(x)12e3e3log(3))ex43log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*((-x*ln(3)-x**3+3*x**2-13*x)*ln(x)-12*exp(x)+(x*exp(3)+1)*ln(3)+(x**3-3*x**2+13*x)*exp(3)+x**2-x
+12)/exp(x)/x,x)

[Out]

(x**2*log(x) - x**2*exp(3) - x*log(x) + x*exp(3) + log(3)*log(x) + 12*log(x) - 12*exp(3) - exp(3)*log(3))*exp(
-x)/4 - 3*log(x)

________________________________________________________________________________________