3.33.87
Optimal. Leaf size=32
________________________________________________________________________________________
Rubi [B] time = 2.14, antiderivative size = 157, normalized size of antiderivative = 4.91,
number of steps used = 21, number of rules used = 8, integrand size = 73, = 0.110, Rules used
= {12, 6742, 2199, 2176, 2194, 2178, 2196, 2554}
Antiderivative was successfully verified.
[In]
Int[(12 - 12*E^x - x + x^2 + E^3*(13*x - 3*x^2 + x^3) + (1 + E^3*x)*Log[3] + (-13*x + 3*x^2 - x^3 - x*Log[3])*
Log[x])/(4*E^x*x),x]
[Out]
-1/2*E^(3 - x) - (1 - 3*E^3)/(4*E^x) - (E^(3 - x)*x)/2 + x/(4*E^x) - ((1 - 3*E^3)*x)/(4*E^x) - (E^(3 - x)*x^2)
/4 + (1 - E^3*(13 + Log[3]))/(4*E^x) - 3*Log[x] - Log[x]/(4*E^x) - (x*Log[x])/(4*E^x) + (x^2*Log[x])/(4*E^x) +
((13 + Log[3])*Log[x])/(4*E^x)
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 2176
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && !$UseGamma === True
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2196
Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] && !$UseGamma === True
Rule 2199
Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] && !$UseGamma === True
Rule 2554
Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[(w*D[u, x]
)/u, x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 1.84, size = 43, normalized size = 1.34
Antiderivative was successfully verified.
[In]
Integrate[(12 - 12*E^x - x + x^2 + E^3*(13*x - 3*x^2 + x^3) + (1 + E^3*x)*Log[3] + (-13*x + 3*x^2 - x^3 - x*Lo
g[3])*Log[x])/(4*E^x*x),x]
[Out]
(-(E^3*(12 - x + x^2 + Log[3])) + (12 - 12*E^x - x + x^2 + Log[3])*Log[x])/(4*E^x)
________________________________________________________________________________________
fricas [A] time = 0.61, size = 41, normalized size = 1.28
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/4*((-x*log(3)-x^3+3*x^2-13*x)*log(x)-12*exp(x)+(x*exp(3)+1)*log(3)+(x^3-3*x^2+13*x)*exp(3)+x^2-x+1
2)/exp(x)/x,x, algorithm="fricas")
[Out]
-1/4*((x^2 - x + 12)*e^3 + e^3*log(3) - (x^2 - x - 12*e^x + log(3) + 12)*log(x))*e^(-x)
________________________________________________________________________________________
giac [B] time = 0.19, size = 81, normalized size = 2.53
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/4*((-x*log(3)-x^3+3*x^2-13*x)*log(x)-12*exp(x)+(x*exp(3)+1)*log(3)+(x^3-3*x^2+13*x)*exp(3)+x^2-x+1
2)/exp(x)/x,x, algorithm="giac")
[Out]
1/4*x^2*e^(-x)*log(x) - 1/4*x^2*e^(-x + 3) - 1/4*x*e^(-x)*log(x) + 1/4*e^(-x)*log(3)*log(x) + 1/4*x*e^(-x + 3)
- 1/4*e^(-x + 3)*log(3) + 3*e^(-x)*log(x) - 3*e^(-x + 3) - 3*log(x)
________________________________________________________________________________________
maple [A] time = 0.10, size = 52, normalized size = 1.62
|
|
|
method |
result |
size |
|
|
|
default |
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(1/4*((-x*ln(3)-x^3+3*x^2-13*x)*ln(x)-12*exp(x)+(x*exp(3)+1)*ln(3)+(x^3-3*x^2+13*x)*exp(3)+x^2-x+12)/exp(x)
/x,x,method=_RETURNVERBOSE)
[Out]
1/4*(x*exp(3)+x^2*ln(x)+(ln(3)+12)*ln(x)-x*ln(x)-x^2*exp(3)-12*exp(3)-exp(3)*ln(3))/exp(x)-3*ln(x)
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/4*((-x*log(3)-x^3+3*x^2-13*x)*log(x)-12*exp(x)+(x*exp(3)+1)*log(3)+(x^3-3*x^2+13*x)*exp(3)+x^2-x+1
2)/exp(x)/x,x, algorithm="maxima")
[Out]
1/4*(x^2 - x - 1)*e^(-x)*log(x) + 1/4*e^(-x)*log(3)*log(x) - 1/4*(x^2*e^3 + 2*x*e^3 + 2*e^3)*e^(-x) + 3/4*(x*e
^3 + e^3)*e^(-x) - 1/4*(x + 1)*e^(-x) - 1/4*e^(-x + 3)*log(3) + 13/4*e^(-x)*log(x) - 1/4*Ei(-x) + 1/4*e^(-x) -
13/4*e^(-x + 3) - 1/4*integrate((x^2 - x - 1)*e^(-x)/x, x) - 3*log(x)
________________________________________________________________________________________
mupad [B] time = 2.13, size = 59, normalized size = 1.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(-x)*((exp(3)*(13*x - 3*x^2 + x^3))/4 - 3*exp(x) - x/4 + (log(3)*(x*exp(3) + 1))/4 - (log(x)*(13*x + x
*log(3) - 3*x^2 + x^3))/4 + x^2/4 + 3))/x,x)
[Out]
(x*exp(-x)*(exp(3) - log(x)))/4 - (exp(-x)*(12*exp(x)*log(x) - log(x)*(log(3) + 12) + exp(3)*(log(3) + 12)))/4
- (x^2*exp(-x)*(exp(3) - log(x)))/4
________________________________________________________________________________________
sympy [B] time = 0.60, size = 56, normalized size = 1.75
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/4*((-x*ln(3)-x**3+3*x**2-13*x)*ln(x)-12*exp(x)+(x*exp(3)+1)*ln(3)+(x**3-3*x**2+13*x)*exp(3)+x**2-x
+12)/exp(x)/x,x)
[Out]
(x**2*log(x) - x**2*exp(3) - x*log(x) + x*exp(3) + log(3)*log(x) + 12*log(x) - 12*exp(3) - exp(3)*log(3))*exp(
-x)/4 - 3*log(x)
________________________________________________________________________________________