3.41.5
Optimal. Leaf size=23
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 24, normalized size of antiderivative = 1.04,
number of steps used = 4, number of rules used = 4, integrand size = 81, = 0.049, Rules used =
{28, 1814, 21, 8}
Antiderivative was successfully verified.
[In]
Int[(4*(5 + I*Pi)^2 - 2*E^8*x^2 + 4*E^16*x^4 + (5 + I*Pi)*(-2 - 8*E^8*x^2))/((5 + I*Pi)^2 - 2*E^8*(5 + I*Pi)*x
^2 + E^16*x^4),x]
[Out]
4*x - (2*x)/(5 + I*Pi - E^8*x^2)
Rule 8
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
Rule 21
Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
d*x, a + b*x])
Rule 28
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
Rule 1814
Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x^2, x], f = Coeff[P
olynomialRemainder[Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 1]}, Simp[((a
*g - b*f*x)*(a + b*x^2)^(p + 1))/(2*a*b*(p + 1)), x] + Dist[1/(2*a*(p + 1)), Int[(a + b*x^2)^(p + 1)*ExpandToS
um[2*a*(p + 1)*Q + f*(2*p + 3), x], x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && LtQ[p, -1]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 23, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(4*(5 + I*Pi)^2 - 2*E^8*x^2 + 4*E^16*x^4 + (5 + I*Pi)*(-2 - 8*E^8*x^2))/((5 + I*Pi)^2 - 2*E^8*(5 + I
*Pi)*x^2 + E^16*x^4),x]
[Out]
4*x + (2*x)/(-5 - I*Pi + E^8*x^2)
________________________________________________________________________________________
fricas [C] time = 0.51, size = 31, normalized size = 1.35
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((4*log(-exp(5))^2+(-8*x^2*exp(4)^2-2)*log(-exp(5))+4*x^4*exp(4)^4-2*x^2*exp(4)^2)/(log(-exp(5))^2-2*
x^2*exp(4)^2*log(-exp(5))+x^4*exp(4)^4),x, algorithm="fricas")
[Out]
-2*(2*x^3*e^8 - 2*I*pi*x - 9*x)/(I*pi - x^2*e^8 + 5)
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((4*log(-exp(5))^2+(-8*x^2*exp(4)^2-2)*log(-exp(5))+4*x^4*exp(4)^4-2*x^2*exp(4)^2)/(log(-exp(5))^2-2*
x^2*exp(4)^2*log(-exp(5))+x^4*exp(4)^4),x, algorithm="giac")
[Out]
Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error index.cc index_gcd Error: Bad Argument ValueError index.cc index_gcd Error: Bad Argument Valueindex.c
c index_m o
________________________________________________________________________________________
maple [C] time = 0.14, size = 23, normalized size = 1.00
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
gosper |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((4*ln(-exp(5))^2+(-8*x^2*exp(4)^2-2)*ln(-exp(5))+4*x^4*exp(4)^4-2*x^2*exp(4)^2)/(ln(-exp(5))^2-2*x^2*exp(4
)^2*ln(-exp(5))+x^4*exp(4)^4),x,method=_RETURNVERBOSE)
[Out]
4*x+2*I*x/(I*exp(8)*x^2+Pi-5*I)
________________________________________________________________________________________
maxima [A] time = 0.36, size = 23, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((4*log(-exp(5))^2+(-8*x^2*exp(4)^2-2)*log(-exp(5))+4*x^4*exp(4)^4-2*x^2*exp(4)^2)/(log(-exp(5))^2-2*
x^2*exp(4)^2*log(-exp(5))+x^4*exp(4)^4),x, algorithm="maxima")
[Out]
4*x + 2*x/(x^2*e^8 - log(-e^5))
________________________________________________________________________________________
mupad [B] time = 0.22, size = 22, normalized size = 0.96
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log(-exp(5))*(8*x^2*exp(8) + 2) - 4*log(-exp(5))^2 + 2*x^2*exp(8) - 4*x^4*exp(16))/(log(-exp(5))^2 + x^4
*exp(16) - 2*x^2*log(-exp(5))*exp(8)),x)
[Out]
4*x - (2*x)/(log(-exp(5)) - x^2*exp(8))
________________________________________________________________________________________
sympy [A] time = 0.40, size = 17, normalized size = 0.74
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((4*ln(-exp(5))**2+(-8*x**2*exp(4)**2-2)*ln(-exp(5))+4*x**4*exp(4)**4-2*x**2*exp(4)**2)/(ln(-exp(5))*
*2-2*x**2*exp(4)**2*ln(-exp(5))+x**4*exp(4)**4),x)
[Out]
4*x + 2*x/(x**2*exp(8) - 5 - I*pi)
________________________________________________________________________________________