3.41.6
Optimal. Leaf size=24
________________________________________________________________________________________
Rubi [A] time = 0.74, antiderivative size = 19, normalized size of antiderivative = 0.79,
number of steps used = 15, number of rules used = 6, integrand size = 66, = 0.091, Rules used
= {1594, 27, 6742, 44, 43, 6706}
Antiderivative was successfully verified.
[In]
Int[(-4 - 40*x - 100*x^2 + x^5 + 10*x^6 + 25*x^7 + E^((4*x^2)/(1 + 5*x))*(8*x^6 + 20*x^7))/(x^5 + 10*x^6 + 25*
x^7),x]
[Out]
E^((4*x^2)/(1 + 5*x)) + x^(-4) + x
Rule 27
Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
Rule 43
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
Rule 44
Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] && !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])
Rule 1594
Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]
Rule 6706
Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /; !FalseQ[q]
] /; FreeQ[F, x]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 19, normalized size = 0.79
Antiderivative was successfully verified.
[In]
Integrate[(-4 - 40*x - 100*x^2 + x^5 + 10*x^6 + 25*x^7 + E^((4*x^2)/(1 + 5*x))*(8*x^6 + 20*x^7))/(x^5 + 10*x^6
+ 25*x^7),x]
[Out]
E^((4*x^2)/(1 + 5*x)) + x^(-4) + x
________________________________________________________________________________________
fricas [A] time = 0.48, size = 26, normalized size = 1.08
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((20*x^7+8*x^6)*exp(4*x^2/(1+5*x))+25*x^7+10*x^6+x^5-100*x^2-40*x-4)/(25*x^7+10*x^6+x^5),x, algorith
m="fricas")
[Out]
(x^5 + x^4*e^(4*x^2/(5*x + 1)) + 1)/x^4
________________________________________________________________________________________
giac [A] time = 0.14, size = 26, normalized size = 1.08
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((20*x^7+8*x^6)*exp(4*x^2/(1+5*x))+25*x^7+10*x^6+x^5-100*x^2-40*x-4)/(25*x^7+10*x^6+x^5),x, algorith
m="giac")
[Out]
(x^5 + x^4*e^(4*x^2/(5*x + 1)) + 1)/x^4
________________________________________________________________________________________
maple [A] time = 0.24, size = 19, normalized size = 0.79
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((20*x^7+8*x^6)*exp(4*x^2/(1+5*x))+25*x^7+10*x^6+x^5-100*x^2-40*x-4)/(25*x^7+10*x^6+x^5),x,method=_RETURNV
ERBOSE)
[Out]
1/x^4+x+exp(4*x^2/(1+5*x))
________________________________________________________________________________________
maxima [B] time = 0.43, size = 101, normalized size = 4.21
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((20*x^7+8*x^6)*exp(4*x^2/(1+5*x))+25*x^7+10*x^6+x^5-100*x^2-40*x-4)/(25*x^7+10*x^6+x^5),x, algorith
m="maxima")
[Out]
x - 1/3*(37500*x^4 + 3750*x^3 - 250*x^2 + 25*x - 3)/(5*x^5 + x^4) + 40/3*(1500*x^3 + 150*x^2 - 10*x + 1)/(5*x^
4 + x^3) - 50*(150*x^2 + 15*x - 1)/(5*x^3 + x^2) + e^(4/5*x + 4/25/(5*x + 1) - 4/25)
________________________________________________________________________________________
mupad [B] time = 2.70, size = 18, normalized size = 0.75
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp((4*x^2)/(5*x + 1))*(8*x^6 + 20*x^7) - 40*x - 100*x^2 + x^5 + 10*x^6 + 25*x^7 - 4)/(x^5 + 10*x^6 + 25*
x^7),x)
[Out]
x + exp((4*x^2)/(5*x + 1)) + 1/x^4
________________________________________________________________________________________
sympy [A] time = 0.18, size = 17, normalized size = 0.71
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((20*x**7+8*x**6)*exp(4*x**2/(1+5*x))+25*x**7+10*x**6+x**5-100*x**2-40*x-4)/(25*x**7+10*x**6+x**5),x
)
[Out]
x + exp(4*x**2/(5*x + 1)) + x**(-4)
________________________________________________________________________________________