3.41.6 440x100x2+x5+10x6+25x7+e4x21+5x(8x6+20x7)x5+10x6+25x7dx

Optimal. Leaf size=24 e92+e4x5+1x+1x4+x

________________________________________________________________________________________

Rubi [A]  time = 0.74, antiderivative size = 19, normalized size of antiderivative = 0.79, number of steps used = 15, number of rules used = 6, integrand size = 66, number of rulesintegrand size = 0.091, Rules used = {1594, 27, 6742, 44, 43, 6706} 1x4+e4x25x+1+x

Antiderivative was successfully verified.

[In]

Int[(-4 - 40*x - 100*x^2 + x^5 + 10*x^6 + 25*x^7 + E^((4*x^2)/(1 + 5*x))*(8*x^6 + 20*x^7))/(x^5 + 10*x^6 + 25*
x^7),x]

[Out]

E^((4*x^2)/(1 + 5*x)) + x^(-4) + x

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 1594

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=440x100x2+x5+10x6+25x7+e4x21+5x(8x6+20x7)x5(1+10x+25x2)dx=440x100x2+x5+10x6+25x7+e4x21+5x(8x6+20x7)x5(1+5x)2dx=(1(1+5x)24x5(1+5x)240x4(1+5x)2100x3(1+5x)2+10x(1+5x)2+25x2(1+5x)2+4e4x21+5xx(2+5x)(1+5x)2)dx=15(1+5x)41x5(1+5x)2dx+4e4x21+5xx(2+5x)(1+5x)2dx+10x(1+5x)2dx+25x2(1+5x)2dx401x4(1+5x)2dx1001x3(1+5x)2dx=e4x21+5x15(1+5x)4(1x510x4+75x3500x2+3125x3125(1+5x)2156251+5x)dx+10(15(1+5x)2+15(1+5x))dx+25(125+125(1+5x)2225(1+5x))dx40(1x410x3+75x2500x+625(1+5x)2+25001+5x)dx100(1x310x2+75x125(1+5x)23751+5x)dx=e4x21+5x+1x4+x

________________________________________________________________________________________

Mathematica [A]  time = 0.22, size = 19, normalized size = 0.79 e4x21+5x+1x4+x

Antiderivative was successfully verified.

[In]

Integrate[(-4 - 40*x - 100*x^2 + x^5 + 10*x^6 + 25*x^7 + E^((4*x^2)/(1 + 5*x))*(8*x^6 + 20*x^7))/(x^5 + 10*x^6
 + 25*x^7),x]

[Out]

E^((4*x^2)/(1 + 5*x)) + x^(-4) + x

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 26, normalized size = 1.08 x5+x4e(4x25x+1)+1x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((20*x^7+8*x^6)*exp(4*x^2/(1+5*x))+25*x^7+10*x^6+x^5-100*x^2-40*x-4)/(25*x^7+10*x^6+x^5),x, algorith
m="fricas")

[Out]

(x^5 + x^4*e^(4*x^2/(5*x + 1)) + 1)/x^4

________________________________________________________________________________________

giac [A]  time = 0.14, size = 26, normalized size = 1.08 x5+x4e(4x25x+1)+1x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((20*x^7+8*x^6)*exp(4*x^2/(1+5*x))+25*x^7+10*x^6+x^5-100*x^2-40*x-4)/(25*x^7+10*x^6+x^5),x, algorith
m="giac")

[Out]

(x^5 + x^4*e^(4*x^2/(5*x + 1)) + 1)/x^4

________________________________________________________________________________________

maple [A]  time = 0.24, size = 19, normalized size = 0.79




method result size



risch 1x4+x+e4x21+5x 19
norman 1+x4e4x21+5x+x5+5x+5x6+5x5e4x21+5xx4(1+5x) 60



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((20*x^7+8*x^6)*exp(4*x^2/(1+5*x))+25*x^7+10*x^6+x^5-100*x^2-40*x-4)/(25*x^7+10*x^6+x^5),x,method=_RETURNV
ERBOSE)

[Out]

1/x^4+x+exp(4*x^2/(1+5*x))

________________________________________________________________________________________

maxima [B]  time = 0.43, size = 101, normalized size = 4.21 x37500x4+3750x3250x2+25x33(5x5+x4)+40(1500x3+150x210x+1)3(5x4+x3)50(150x2+15x1)5x3+x2+e(45x+425(5x+1)425)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((20*x^7+8*x^6)*exp(4*x^2/(1+5*x))+25*x^7+10*x^6+x^5-100*x^2-40*x-4)/(25*x^7+10*x^6+x^5),x, algorith
m="maxima")

[Out]

x - 1/3*(37500*x^4 + 3750*x^3 - 250*x^2 + 25*x - 3)/(5*x^5 + x^4) + 40/3*(1500*x^3 + 150*x^2 - 10*x + 1)/(5*x^
4 + x^3) - 50*(150*x^2 + 15*x - 1)/(5*x^3 + x^2) + e^(4/5*x + 4/25/(5*x + 1) - 4/25)

________________________________________________________________________________________

mupad [B]  time = 2.70, size = 18, normalized size = 0.75 x+e4x25x+1+1x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp((4*x^2)/(5*x + 1))*(8*x^6 + 20*x^7) - 40*x - 100*x^2 + x^5 + 10*x^6 + 25*x^7 - 4)/(x^5 + 10*x^6 + 25*
x^7),x)

[Out]

x + exp((4*x^2)/(5*x + 1)) + 1/x^4

________________________________________________________________________________________

sympy [A]  time = 0.18, size = 17, normalized size = 0.71 x+e4x25x+1+1x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((20*x**7+8*x**6)*exp(4*x**2/(1+5*x))+25*x**7+10*x**6+x**5-100*x**2-40*x-4)/(25*x**7+10*x**6+x**5),x
)

[Out]

x + exp(4*x**2/(5*x + 1)) + x**(-4)

________________________________________________________________________________________