Optimal. Leaf size=24 \[ -\frac {e^9}{2}+e^{\frac {4 x}{5+\frac {1}{x}}}+\frac {1}{x^4}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.74, antiderivative size = 19, normalized size of antiderivative = 0.79, number of steps used = 15, number of rules used = 6, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1594, 27, 6742, 44, 43, 6706} \begin {gather*} \frac {1}{x^4}+e^{\frac {4 x^2}{5 x+1}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 43
Rule 44
Rule 1594
Rule 6706
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4-40 x-100 x^2+x^5+10 x^6+25 x^7+e^{\frac {4 x^2}{1+5 x}} \left (8 x^6+20 x^7\right )}{x^5 \left (1+10 x+25 x^2\right )} \, dx\\ &=\int \frac {-4-40 x-100 x^2+x^5+10 x^6+25 x^7+e^{\frac {4 x^2}{1+5 x}} \left (8 x^6+20 x^7\right )}{x^5 (1+5 x)^2} \, dx\\ &=\int \left (\frac {1}{(1+5 x)^2}-\frac {4}{x^5 (1+5 x)^2}-\frac {40}{x^4 (1+5 x)^2}-\frac {100}{x^3 (1+5 x)^2}+\frac {10 x}{(1+5 x)^2}+\frac {25 x^2}{(1+5 x)^2}+\frac {4 e^{\frac {4 x^2}{1+5 x}} x (2+5 x)}{(1+5 x)^2}\right ) \, dx\\ &=-\frac {1}{5 (1+5 x)}-4 \int \frac {1}{x^5 (1+5 x)^2} \, dx+4 \int \frac {e^{\frac {4 x^2}{1+5 x}} x (2+5 x)}{(1+5 x)^2} \, dx+10 \int \frac {x}{(1+5 x)^2} \, dx+25 \int \frac {x^2}{(1+5 x)^2} \, dx-40 \int \frac {1}{x^4 (1+5 x)^2} \, dx-100 \int \frac {1}{x^3 (1+5 x)^2} \, dx\\ &=e^{\frac {4 x^2}{1+5 x}}-\frac {1}{5 (1+5 x)}-4 \int \left (\frac {1}{x^5}-\frac {10}{x^4}+\frac {75}{x^3}-\frac {500}{x^2}+\frac {3125}{x}-\frac {3125}{(1+5 x)^2}-\frac {15625}{1+5 x}\right ) \, dx+10 \int \left (-\frac {1}{5 (1+5 x)^2}+\frac {1}{5 (1+5 x)}\right ) \, dx+25 \int \left (\frac {1}{25}+\frac {1}{25 (1+5 x)^2}-\frac {2}{25 (1+5 x)}\right ) \, dx-40 \int \left (\frac {1}{x^4}-\frac {10}{x^3}+\frac {75}{x^2}-\frac {500}{x}+\frac {625}{(1+5 x)^2}+\frac {2500}{1+5 x}\right ) \, dx-100 \int \left (\frac {1}{x^3}-\frac {10}{x^2}+\frac {75}{x}-\frac {125}{(1+5 x)^2}-\frac {375}{1+5 x}\right ) \, dx\\ &=e^{\frac {4 x^2}{1+5 x}}+\frac {1}{x^4}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 19, normalized size = 0.79 \begin {gather*} e^{\frac {4 x^2}{1+5 x}}+\frac {1}{x^4}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 26, normalized size = 1.08 \begin {gather*} \frac {x^{5} + x^{4} e^{\left (\frac {4 \, x^{2}}{5 \, x + 1}\right )} + 1}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 26, normalized size = 1.08 \begin {gather*} \frac {x^{5} + x^{4} e^{\left (\frac {4 \, x^{2}}{5 \, x + 1}\right )} + 1}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 19, normalized size = 0.79
method | result | size |
risch | \(\frac {1}{x^{4}}+x +{\mathrm e}^{\frac {4 x^{2}}{1+5 x}}\) | \(19\) |
norman | \(\frac {1+x^{4} {\mathrm e}^{\frac {4 x^{2}}{1+5 x}}+x^{5}+5 x +5 x^{6}+5 x^{5} {\mathrm e}^{\frac {4 x^{2}}{1+5 x}}}{x^{4} \left (1+5 x \right )}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 101, normalized size = 4.21 \begin {gather*} x - \frac {37500 \, x^{4} + 3750 \, x^{3} - 250 \, x^{2} + 25 \, x - 3}{3 \, {\left (5 \, x^{5} + x^{4}\right )}} + \frac {40 \, {\left (1500 \, x^{3} + 150 \, x^{2} - 10 \, x + 1\right )}}{3 \, {\left (5 \, x^{4} + x^{3}\right )}} - \frac {50 \, {\left (150 \, x^{2} + 15 \, x - 1\right )}}{5 \, x^{3} + x^{2}} + e^{\left (\frac {4}{5} \, x + \frac {4}{25 \, {\left (5 \, x + 1\right )}} - \frac {4}{25}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.70, size = 18, normalized size = 0.75 \begin {gather*} x+{\mathrm {e}}^{\frac {4\,x^2}{5\,x+1}}+\frac {1}{x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 17, normalized size = 0.71 \begin {gather*} x + e^{\frac {4 x^{2}}{5 x + 1}} + \frac {1}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________