3.41.20 e2e(16+e2e(5+2x3))x2dx

Optimal. Leaf size=29 5+16e2ex+x(ex+x)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 17, normalized size of antiderivative = 0.59, number of steps used = 3, number of rules used = 2, integrand size = 24, number of rulesintegrand size = 0.083, Rules used = {12, 14} x2+516e2ex

Antiderivative was successfully verified.

[In]

Int[(16 + E^(2*E)*(-5 + 2*x^3))/(E^(2*E)*x^2),x]

[Out]

(5 - 16/E^(2*E))/x + x^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

integral=e2e16+e2e(5+2x3)x2dx=e2e(16+5e2ex2+2e2ex)dx=516e2ex+x2

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 18, normalized size = 0.62 5+16e2ex+x2

Antiderivative was successfully verified.

[In]

Integrate[(16 + E^(2*E)*(-5 + 2*x^3))/(E^(2*E)*x^2),x]

[Out]

-((-5 + 16/E^(2*E))/x) + x^2

________________________________________________________________________________________

fricas [A]  time = 0.88, size = 22, normalized size = 0.76 ((x3+5)e(2e)16)e(2e)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3-5)*exp(exp(1))^2+16)/x^2/exp(exp(1))^2,x, algorithm="fricas")

[Out]

((x^3 + 5)*e^(2*e) - 16)*e^(-2*e)/x

________________________________________________________________________________________

giac [A]  time = 0.17, size = 29, normalized size = 1.00 (x2e(2e)+5e(2e)16x)e(2e)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3-5)*exp(exp(1))^2+16)/x^2/exp(exp(1))^2,x, algorithm="giac")

[Out]

(x^2*e^(2*e) + (5*e^(2*e) - 16)/x)*e^(-2*e)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 28, normalized size = 0.97




method result size



gosper (x3e2e+5e2e16)e2ex 28
risch x2+5e2ee2ex16e2ex 30
default e2e(e2ex25e2e+16x) 31
norman (x3ee+ee(5e2e16))eex 33



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x^3-5)*exp(exp(1))^2+16)/x^2/exp(exp(1))^2,x,method=_RETURNVERBOSE)

[Out]

(x^3*exp(exp(1))^2+5*exp(exp(1))^2-16)/exp(exp(1))^2/x

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 29, normalized size = 1.00 (x2e(2e)+5e(2e)16x)e(2e)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3-5)*exp(exp(1))^2+16)/x^2/exp(exp(1))^2,x, algorithm="maxima")

[Out]

(x^2*e^(2*e) + (5*e^(2*e) - 16)/x)*e^(-2*e)

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 18, normalized size = 0.62 x216e2e5x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-2*exp(1))*(exp(2*exp(1))*(2*x^3 - 5) + 16))/x^2,x)

[Out]

x^2 - (16*exp(-2*exp(1)) - 5)/x

________________________________________________________________________________________

sympy [A]  time = 0.10, size = 27, normalized size = 0.93 x2e2e+16+5e2exe2e

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x**3-5)*exp(exp(1))**2+16)/x**2/exp(exp(1))**2,x)

[Out]

(x**2*exp(2*E) + (-16 + 5*exp(2*E))/x)*exp(-2*E)

________________________________________________________________________________________