Optimal. Leaf size=29 \[ -\frac {-5+16 e^{-2 e}}{x}+x \left (-\frac {\sqrt {e}}{x}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 17, normalized size of antiderivative = 0.59, number of steps used = 3, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {12, 14} \begin {gather*} x^2+\frac {5-16 e^{-2 e}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{-2 e} \int \frac {16+e^{2 e} \left (-5+2 x^3\right )}{x^2} \, dx\\ &=e^{-2 e} \int \left (-\frac {-16+5 e^{2 e}}{x^2}+2 e^{2 e} x\right ) \, dx\\ &=\frac {5-16 e^{-2 e}}{x}+x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 0.62 \begin {gather*} -\frac {-5+16 e^{-2 e}}{x}+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 22, normalized size = 0.76 \begin {gather*} \frac {{\left ({\left (x^{3} + 5\right )} e^{\left (2 \, e\right )} - 16\right )} e^{\left (-2 \, e\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 29, normalized size = 1.00 \begin {gather*} {\left (x^{2} e^{\left (2 \, e\right )} + \frac {5 \, e^{\left (2 \, e\right )} - 16}{x}\right )} e^{\left (-2 \, e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 28, normalized size = 0.97
method | result | size |
gosper | \(\frac {\left (x^{3} {\mathrm e}^{2 \,{\mathrm e}}+5 \,{\mathrm e}^{2 \,{\mathrm e}}-16\right ) {\mathrm e}^{-2 \,{\mathrm e}}}{x}\) | \(28\) |
risch | \(x^{2}+\frac {5 \,{\mathrm e}^{-2 \,{\mathrm e}} {\mathrm e}^{2 \,{\mathrm e}}}{x}-\frac {16 \,{\mathrm e}^{-2 \,{\mathrm e}}}{x}\) | \(30\) |
default | \({\mathrm e}^{-2 \,{\mathrm e}} \left ({\mathrm e}^{2 \,{\mathrm e}} x^{2}-\frac {-5 \,{\mathrm e}^{2 \,{\mathrm e}}+16}{x}\right )\) | \(31\) |
norman | \(\frac {\left (x^{3} {\mathrm e}^{{\mathrm e}}+{\mathrm e}^{-{\mathrm e}} \left (5 \,{\mathrm e}^{2 \,{\mathrm e}}-16\right )\right ) {\mathrm e}^{-{\mathrm e}}}{x}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 29, normalized size = 1.00 \begin {gather*} {\left (x^{2} e^{\left (2 \, e\right )} + \frac {5 \, e^{\left (2 \, e\right )} - 16}{x}\right )} e^{\left (-2 \, e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 18, normalized size = 0.62 \begin {gather*} x^2-\frac {16\,{\mathrm {e}}^{-2\,\mathrm {e}}-5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 27, normalized size = 0.93 \begin {gather*} \frac {x^{2} e^{2 e} + \frac {-16 + 5 e^{2 e}}{x}}{e^{2 e}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________