3.41.50
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [F] time = 6.39, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-9*x^4 - 6*x^5 + 6*x^6 + E^(16*E^x)*(-4 + 4*x - x^2) + E^(8*E^x)*(12*x^2 + 6*x^3 - 12*x^4 + 3*x^5 + E^x*(
-32*x^4 + 32*x^5 - 8*x^6)))/(9*x^5 + E^(16*E^x)*(4*x - 4*x^2 + x^3) + E^(8*E^x)*(-12*x^3 + 6*x^4)),x]
[Out]
-Log[x] - 32*Defer[Int][(E^(8*E^x + x)*x^3)/(E^(8*E^x)*(-2 + x) + 3*x^2)^2, x] + 12*Defer[Int][x^4/(E^(8*E^x)*
(-2 + x) + 3*x^2)^2, x] + 32*Defer[Int][(E^(8*E^x + x)*x^4)/(E^(8*E^x)*(-2 + x) + 3*x^2)^2, x] - 3*Defer[Int][
x^5/(E^(8*E^x)*(-2 + x) + 3*x^2)^2, x] - 8*Defer[Int][(E^(8*E^x + x)*x^5)/(E^(8*E^x)*(-2 + x) + 3*x^2)^2, x] -
6*Defer[Int][x^2/(E^(8*E^x)*(-2 + x) + 3*x^2), x] + 3*Defer[Int][x^3/(E^(8*E^x)*(-2 + x) + 3*x^2), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 31, normalized size = 1.11
Antiderivative was successfully verified.
[In]
Integrate[(-9*x^4 - 6*x^5 + 6*x^6 + E^(16*E^x)*(-4 + 4*x - x^2) + E^(8*E^x)*(12*x^2 + 6*x^3 - 12*x^4 + 3*x^5 +
E^x*(-32*x^4 + 32*x^5 - 8*x^6)))/(9*x^5 + E^(16*E^x)*(4*x - 4*x^2 + x^3) + E^(8*E^x)*(-12*x^3 + 6*x^4)),x]
[Out]
((-2 + x)*x^3)/(E^(8*E^x)*(-2 + x) + 3*x^2) - Log[x]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 46, normalized size = 1.64
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-x^2+4*x-4)*exp(8*exp(x))^2+((-8*x^6+32*x^5-32*x^4)*exp(x)+3*x^5-12*x^4+6*x^3+12*x^2)*exp(8*exp(x)
)+6*x^6-6*x^5-9*x^4)/((x^3-4*x^2+4*x)*exp(8*exp(x))^2+(6*x^4-12*x^3)*exp(8*exp(x))+9*x^5),x, algorithm="fricas
")
[Out]
(x^4 - 2*x^3 - 3*x^2*log(x) - (x - 2)*e^(8*e^x)*log(x))/(3*x^2 + (x - 2)*e^(8*e^x))
________________________________________________________________________________________
giac [B] time = 0.28, size = 58, normalized size = 2.07
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-x^2+4*x-4)*exp(8*exp(x))^2+((-8*x^6+32*x^5-32*x^4)*exp(x)+3*x^5-12*x^4+6*x^3+12*x^2)*exp(8*exp(x)
)+6*x^6-6*x^5-9*x^4)/((x^3-4*x^2+4*x)*exp(8*exp(x))^2+(6*x^4-12*x^3)*exp(8*exp(x))+9*x^5),x, algorithm="giac")
[Out]
(x^4 - 2*x^3 - 3*x^2*log(x) - x*e^(8*e^x)*log(x) + 2*e^(8*e^x)*log(x))/(3*x^2 + x*e^(8*e^x) - 2*e^(8*e^x))
________________________________________________________________________________________
maple [A] time = 0.05, size = 35, normalized size = 1.25
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-x^2+4*x-4)*exp(8*exp(x))^2+((-8*x^6+32*x^5-32*x^4)*exp(x)+3*x^5-12*x^4+6*x^3+12*x^2)*exp(8*exp(x))+6*x^
6-6*x^5-9*x^4)/((x^3-4*x^2+4*x)*exp(8*exp(x))^2+(6*x^4-12*x^3)*exp(8*exp(x))+9*x^5),x,method=_RETURNVERBOSE)
[Out]
-ln(x)+(x-2)*x^3/(exp(8*exp(x))*x+3*x^2-2*exp(8*exp(x)))
________________________________________________________________________________________
maxima [A] time = 0.43, size = 32, normalized size = 1.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-x^2+4*x-4)*exp(8*exp(x))^2+((-8*x^6+32*x^5-32*x^4)*exp(x)+3*x^5-12*x^4+6*x^3+12*x^2)*exp(8*exp(x)
)+6*x^6-6*x^5-9*x^4)/((x^3-4*x^2+4*x)*exp(8*exp(x))^2+(6*x^4-12*x^3)*exp(8*exp(x))+9*x^5),x, algorithm="maxima
")
[Out]
(x^4 - 2*x^3)/(3*x^2 + (x - 2)*e^(8*e^x)) - log(x)
________________________________________________________________________________________
mupad [B] time = 3.10, size = 60, normalized size = 2.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(16*exp(x))*(x^2 - 4*x + 4) - exp(8*exp(x))*(12*x^2 - exp(x)*(32*x^4 - 32*x^5 + 8*x^6) + 6*x^3 - 12*x
^4 + 3*x^5) + 9*x^4 + 6*x^5 - 6*x^6)/(exp(16*exp(x))*(4*x - 4*x^2 + x^3) - exp(8*exp(x))*(12*x^3 - 6*x^4) + 9*
x^5),x)
[Out]
-(3*x^2*log(x) + 2*x^3 - x^4 - 2*exp(8*exp(x))*log(x) + x*exp(8*exp(x))*log(x))/(x*exp(8*exp(x)) - 2*exp(8*exp
(x)) + 3*x^2)
________________________________________________________________________________________
sympy [A] time = 0.24, size = 26, normalized size = 0.93
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-x**2+4*x-4)*exp(8*exp(x))**2+((-8*x**6+32*x**5-32*x**4)*exp(x)+3*x**5-12*x**4+6*x**3+12*x**2)*exp
(8*exp(x))+6*x**6-6*x**5-9*x**4)/((x**3-4*x**2+4*x)*exp(8*exp(x))**2+(6*x**4-12*x**3)*exp(8*exp(x))+9*x**5),x)
[Out]
-log(x) + (x**4 - 2*x**3)/(3*x**2 + (x - 2)*exp(8*exp(x)))
________________________________________________________________________________________