3.41.50 9x46x5+6x6+e16ex(4+4xx2)+e8ex(12x2+6x312x4+3x5+ex(32x4+32x58x6))9x5+e16ex(4x4x2+x3)+e8ex(12x3+6x4)dx

Optimal. Leaf size=28 x32+x+e8exx2log(x)

________________________________________________________________________________________

Rubi [F]  time = 6.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 9x46x5+6x6+e16ex(4+4xx2)+e8ex(12x2+6x312x4+3x5+ex(32x4+32x58x6))9x5+e16ex(4x4x2+x3)+e8ex(12x3+6x4)dx

Verification is not applicable to the result.

[In]

Int[(-9*x^4 - 6*x^5 + 6*x^6 + E^(16*E^x)*(-4 + 4*x - x^2) + E^(8*E^x)*(12*x^2 + 6*x^3 - 12*x^4 + 3*x^5 + E^x*(
-32*x^4 + 32*x^5 - 8*x^6)))/(9*x^5 + E^(16*E^x)*(4*x - 4*x^2 + x^3) + E^(8*E^x)*(-12*x^3 + 6*x^4)),x]

[Out]

-Log[x] - 32*Defer[Int][(E^(8*E^x + x)*x^3)/(E^(8*E^x)*(-2 + x) + 3*x^2)^2, x] + 12*Defer[Int][x^4/(E^(8*E^x)*
(-2 + x) + 3*x^2)^2, x] + 32*Defer[Int][(E^(8*E^x + x)*x^4)/(E^(8*E^x)*(-2 + x) + 3*x^2)^2, x] - 3*Defer[Int][
x^5/(E^(8*E^x)*(-2 + x) + 3*x^2)^2, x] - 8*Defer[Int][(E^(8*E^x + x)*x^5)/(E^(8*E^x)*(-2 + x) + 3*x^2)^2, x] -
 6*Defer[Int][x^2/(E^(8*E^x)*(-2 + x) + 3*x^2), x] + 3*Defer[Int][x^3/(E^(8*E^x)*(-2 + x) + 3*x^2), x]

Rubi steps

integral=e16ex(2+x)28e8ex+x(2+x)2x4+3x4(32x+2x2)+3e8exx2(4+2x4x2+x3)x(e8ex(2+x)+3x2)2dx=(8e8ex+x(2+x)2x3(2e8ex+e8exx+3x2)2+4e16ex+4e16exx+12e8exx2e16exx2+6e8exx39x412e8exx46x5+3e8exx5+6x6x(2e8ex+e8exx+3x2)2)dx=(8e8ex+x(2+x)2x3(2e8ex+e8exx+3x2)2dx)+4e16ex+4e16exx+12e8exx2e16exx2+6e8exx39x412e8exx46x5+3e8exx5+6x6x(2e8ex+e8exx+3x2)2dx=(8(4e8ex+xx3(2e8ex+e8exx+3x2)24e8ex+xx4(2e8ex+e8exx+3x2)2+e8ex+xx5(2e8ex+e8exx+3x2)2)dx)+e16ex(2+x)2+3x4(32x+2x2)+3e8exx2(4+2x4x2+x3)x(e8ex(2+x)+3x2)2dx=(8e8ex+xx5(2e8ex+e8exx+3x2)2dx)32e8ex+xx3(2e8ex+e8exx+3x2)2dx+32e8ex+xx4(2e8ex+e8exx+3x2)2dx+(1x3(4+x)x4(2e8ex+e8exx+3x2)2+3(2+x)x22e8ex+e8exx+3x2)dx=log(x)3(4+x)x4(2e8ex+e8exx+3x2)2dx+3(2+x)x22e8ex+e8exx+3x2dx8e8ex+xx5(e8ex(2+x)+3x2)2dx32e8ex+xx3(e8ex(2+x)+3x2)2dx+32e8ex+xx4(e8ex(2+x)+3x2)2dx=log(x)3(4+x)x4(e8ex(2+x)+3x2)2dx+3(2+x)x2e8ex(2+x)+3x2dx8e8ex+xx5(e8ex(2+x)+3x2)2dx32e8ex+xx3(e8ex(2+x)+3x2)2dx+32e8ex+xx4(e8ex(2+x)+3x2)2dx=log(x)3(4x4(2e8ex+e8exx+3x2)2+x5(2e8ex+e8exx+3x2)2)dx+3(2x22e8ex+e8exx+3x2+x32e8ex+e8exx+3x2)dx8e8ex+xx5(e8ex(2+x)+3x2)2dx32e8ex+xx3(e8ex(2+x)+3x2)2dx+32e8ex+xx4(e8ex(2+x)+3x2)2dx=log(x)3x5(2e8ex+e8exx+3x2)2dx+3x32e8ex+e8exx+3x2dx6x22e8ex+e8exx+3x2dx8e8ex+xx5(e8ex(2+x)+3x2)2dx+12x4(2e8ex+e8exx+3x2)2dx32e8ex+xx3(e8ex(2+x)+3x2)2dx+32e8ex+xx4(e8ex(2+x)+3x2)2dx=log(x)3x5(e8ex(2+x)+3x2)2dx+3x3e8ex(2+x)+3x2dx6x2e8ex(2+x)+3x2dx8e8ex+xx5(e8ex(2+x)+3x2)2dx+12x4(e8ex(2+x)+3x2)2dx32e8ex+xx3(e8ex(2+x)+3x2)2dx+32e8ex+xx4(e8ex(2+x)+3x2)2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 31, normalized size = 1.11 (2+x)x3e8ex(2+x)+3x2log(x)

Antiderivative was successfully verified.

[In]

Integrate[(-9*x^4 - 6*x^5 + 6*x^6 + E^(16*E^x)*(-4 + 4*x - x^2) + E^(8*E^x)*(12*x^2 + 6*x^3 - 12*x^4 + 3*x^5 +
 E^x*(-32*x^4 + 32*x^5 - 8*x^6)))/(9*x^5 + E^(16*E^x)*(4*x - 4*x^2 + x^3) + E^(8*E^x)*(-12*x^3 + 6*x^4)),x]

[Out]

((-2 + x)*x^3)/(E^(8*E^x)*(-2 + x) + 3*x^2) - Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 46, normalized size = 1.64 x42x33x2log(x)(x2)e(8ex)log(x)3x2+(x2)e(8ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x^2+4*x-4)*exp(8*exp(x))^2+((-8*x^6+32*x^5-32*x^4)*exp(x)+3*x^5-12*x^4+6*x^3+12*x^2)*exp(8*exp(x)
)+6*x^6-6*x^5-9*x^4)/((x^3-4*x^2+4*x)*exp(8*exp(x))^2+(6*x^4-12*x^3)*exp(8*exp(x))+9*x^5),x, algorithm="fricas
")

[Out]

(x^4 - 2*x^3 - 3*x^2*log(x) - (x - 2)*e^(8*e^x)*log(x))/(3*x^2 + (x - 2)*e^(8*e^x))

________________________________________________________________________________________

giac [B]  time = 0.28, size = 58, normalized size = 2.07 x42x33x2log(x)xe(8ex)log(x)+2e(8ex)log(x)3x2+xe(8ex)2e(8ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x^2+4*x-4)*exp(8*exp(x))^2+((-8*x^6+32*x^5-32*x^4)*exp(x)+3*x^5-12*x^4+6*x^3+12*x^2)*exp(8*exp(x)
)+6*x^6-6*x^5-9*x^4)/((x^3-4*x^2+4*x)*exp(8*exp(x))^2+(6*x^4-12*x^3)*exp(8*exp(x))+9*x^5),x, algorithm="giac")

[Out]

(x^4 - 2*x^3 - 3*x^2*log(x) - x*e^(8*e^x)*log(x) + 2*e^(8*e^x)*log(x))/(3*x^2 + x*e^(8*e^x) - 2*e^(8*e^x))

________________________________________________________________________________________

maple [A]  time = 0.05, size = 35, normalized size = 1.25




method result size



risch ln(x)+(x2)x3e8exx+3x22e8ex 35



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-x^2+4*x-4)*exp(8*exp(x))^2+((-8*x^6+32*x^5-32*x^4)*exp(x)+3*x^5-12*x^4+6*x^3+12*x^2)*exp(8*exp(x))+6*x^
6-6*x^5-9*x^4)/((x^3-4*x^2+4*x)*exp(8*exp(x))^2+(6*x^4-12*x^3)*exp(8*exp(x))+9*x^5),x,method=_RETURNVERBOSE)

[Out]

-ln(x)+(x-2)*x^3/(exp(8*exp(x))*x+3*x^2-2*exp(8*exp(x)))

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 32, normalized size = 1.14 x42x33x2+(x2)e(8ex)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x^2+4*x-4)*exp(8*exp(x))^2+((-8*x^6+32*x^5-32*x^4)*exp(x)+3*x^5-12*x^4+6*x^3+12*x^2)*exp(8*exp(x)
)+6*x^6-6*x^5-9*x^4)/((x^3-4*x^2+4*x)*exp(8*exp(x))^2+(6*x^4-12*x^3)*exp(8*exp(x))+9*x^5),x, algorithm="maxima
")

[Out]

(x^4 - 2*x^3)/(3*x^2 + (x - 2)*e^(8*e^x)) - log(x)

________________________________________________________________________________________

mupad [B]  time = 3.10, size = 60, normalized size = 2.14 3x2ln(x)+2x3x42e8exln(x)+xe8exln(x)xe8ex2e8ex+3x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(16*exp(x))*(x^2 - 4*x + 4) - exp(8*exp(x))*(12*x^2 - exp(x)*(32*x^4 - 32*x^5 + 8*x^6) + 6*x^3 - 12*x
^4 + 3*x^5) + 9*x^4 + 6*x^5 - 6*x^6)/(exp(16*exp(x))*(4*x - 4*x^2 + x^3) - exp(8*exp(x))*(12*x^3 - 6*x^4) + 9*
x^5),x)

[Out]

-(3*x^2*log(x) + 2*x^3 - x^4 - 2*exp(8*exp(x))*log(x) + x*exp(8*exp(x))*log(x))/(x*exp(8*exp(x)) - 2*exp(8*exp
(x)) + 3*x^2)

________________________________________________________________________________________

sympy [A]  time = 0.24, size = 26, normalized size = 0.93 log(x)+x42x33x2+(x2)e8ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x**2+4*x-4)*exp(8*exp(x))**2+((-8*x**6+32*x**5-32*x**4)*exp(x)+3*x**5-12*x**4+6*x**3+12*x**2)*exp
(8*exp(x))+6*x**6-6*x**5-9*x**4)/((x**3-4*x**2+4*x)*exp(8*exp(x))**2+(6*x**4-12*x**3)*exp(8*exp(x))+9*x**5),x)

[Out]

-log(x) + (x**4 - 2*x**3)/(3*x**2 + (x - 2)*exp(8*exp(x)))

________________________________________________________________________________________