3.41.51
Optimal. Leaf size=21
________________________________________________________________________________________
Rubi [A] time = 1.07, antiderivative size = 35, normalized size of antiderivative = 1.67,
number of steps used = 4, number of rules used = 4, integrand size = 83, = 0.048, Rules used =
{6, 6741, 12, 6706}
Antiderivative was successfully verified.
[In]
Int[(E^((4*x^2 + x^2*Log[169])/(20*Log[50 - x]))*(-4*x^2 - x^2*Log[169] + (-400*x + 8*x^2 + (-100*x + 2*x^2)*L
og[169])*Log[50 - x]))/((-1000 + 20*x)*Log[50 - x]^2),x]
[Out]
13^(x^2/(10*Log[50 - x]))*E^(x^2/(5*Log[50 - x]))
Rule 6
Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] && !FreeQ[v, x]
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 6706
Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /; !FalseQ[q]
] /; FreeQ[F, x]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.82, size = 48, normalized size = 2.29
Antiderivative was successfully verified.
[In]
Integrate[(E^((4*x^2 + x^2*Log[169])/(20*Log[50 - x]))*(-4*x^2 - x^2*Log[169] + (-400*x + 8*x^2 + (-100*x + 2*
x^2)*Log[169])*Log[50 - x]))/((-1000 + 20*x)*Log[50 - x]^2),x]
[Out]
(13^(x^2/(10*Log[50 - x]))*E^(x^2/(5*Log[50 - x]))*(4 + Log[169]))/(2*(2 + Log[13]))
________________________________________________________________________________________
fricas [A] time = 0.94, size = 23, normalized size = 1.10
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*(2*x^2-100*x)*log(13)+8*x^2-400*x)*log(-x+50)-2*x^2*log(13)-4*x^2)*exp(1/20*(2*x^2*log(13)+4*x^2
)/log(-x+50))/(20*x-1000)/log(-x+50)^2,x, algorithm="fricas")
[Out]
e^(1/10*(x^2*log(13) + 2*x^2)/log(-x + 50))
________________________________________________________________________________________
giac [A] time = 0.15, size = 30, normalized size = 1.43
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*(2*x^2-100*x)*log(13)+8*x^2-400*x)*log(-x+50)-2*x^2*log(13)-4*x^2)*exp(1/20*(2*x^2*log(13)+4*x^2
)/log(-x+50))/(20*x-1000)/log(-x+50)^2,x, algorithm="giac")
[Out]
e^(1/10*x^2*log(13)/log(-x + 50) + 1/5*x^2/log(-x + 50))
________________________________________________________________________________________
maple [A] time = 0.11, size = 19, normalized size = 0.90
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((2*(2*x^2-100*x)*ln(13)+8*x^2-400*x)*ln(-x+50)-2*x^2*ln(13)-4*x^2)*exp(1/20*(2*x^2*ln(13)+4*x^2)/ln(-x+50
))/(20*x-1000)/ln(-x+50)^2,x,method=_RETURNVERBOSE)
[Out]
exp(1/10*x^2*(ln(13)+2)/ln(-x+50))
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*(2*x^2-100*x)*log(13)+8*x^2-400*x)*log(-x+50)-2*x^2*log(13)-4*x^2)*exp(1/20*(2*x^2*log(13)+4*x^2
)/log(-x+50))/(20*x-1000)/log(-x+50)^2,x, algorithm="maxima")
[Out]
Exception raised: RuntimeError >> ECL says: In function CAR, the value of the first argument is 0which is not
of the expected type LIST
________________________________________________________________________________________
mupad [B] time = 3.52, size = 23, normalized size = 1.10
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(((x^2*log(13))/10 + x^2/5)/log(50 - x))*(2*x^2*log(13) + log(50 - x)*(400*x + 2*log(13)*(100*x - 2*x
^2) - 8*x^2) + 4*x^2))/(log(50 - x)^2*(20*x - 1000)),x)
[Out]
exp((x^2*log(13) + 2*x^2)/(10*log(50 - x)))
________________________________________________________________________________________
sympy [A] time = 0.51, size = 19, normalized size = 0.90
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*(2*x**2-100*x)*ln(13)+8*x**2-400*x)*ln(-x+50)-2*x**2*ln(13)-4*x**2)*exp(1/20*(2*x**2*ln(13)+4*x*
*2)/ln(-x+50))/(20*x-1000)/ln(-x+50)**2,x)
[Out]
exp((x**2/5 + x**2*log(13)/10)/log(50 - x))
________________________________________________________________________________________