3.41.51 e4x2+x2log(169)20log(50x)(4x2x2log(169)+(400x+8x2+(100x+2x2)log(169))log(50x))(1000+20x)log2(50x)dx

Optimal. Leaf size=21 ex2(4+log(169))20log(50x)

________________________________________________________________________________________

Rubi [A]  time = 1.07, antiderivative size = 35, normalized size of antiderivative = 1.67, number of steps used = 4, number of rules used = 4, integrand size = 83, number of rulesintegrand size = 0.048, Rules used = {6, 6741, 12, 6706} 13x210log(50x)ex25log(50x)

Antiderivative was successfully verified.

[In]

Int[(E^((4*x^2 + x^2*Log[169])/(20*Log[50 - x]))*(-4*x^2 - x^2*Log[169] + (-400*x + 8*x^2 + (-100*x + 2*x^2)*L
og[169])*Log[50 - x]))/((-1000 + 20*x)*Log[50 - x]^2),x]

[Out]

13^(x^2/(10*Log[50 - x]))*E^(x^2/(5*Log[50 - x]))

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rubi steps

integral=e4x2+x2log(169)20log(50x)(x2(4log(169))+(400x+8x2+(100x+2x2)log(169))log(50x))(1000+20x)log2(50x)dx=ex2(4+log(169))20log(50x)x(4+log(169))(x+100log(50x)2xlog(50x))(100020x)log2(50x)dx=(4+log(169))ex2(4+log(169))20log(50x)x(x+100log(50x)2xlog(50x))(100020x)log2(50x)dx=13x210log(50x)ex25log(50x)

________________________________________________________________________________________

Mathematica [B]  time = 0.82, size = 48, normalized size = 2.29 13x210log(50x)ex25log(50x)(4+log(169))2(2+log(13))

Antiderivative was successfully verified.

[In]

Integrate[(E^((4*x^2 + x^2*Log[169])/(20*Log[50 - x]))*(-4*x^2 - x^2*Log[169] + (-400*x + 8*x^2 + (-100*x + 2*
x^2)*Log[169])*Log[50 - x]))/((-1000 + 20*x)*Log[50 - x]^2),x]

[Out]

(13^(x^2/(10*Log[50 - x]))*E^(x^2/(5*Log[50 - x]))*(4 + Log[169]))/(2*(2 + Log[13]))

________________________________________________________________________________________

fricas [A]  time = 0.94, size = 23, normalized size = 1.10 e(x2log(13)+2x210log(x+50))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*(2*x^2-100*x)*log(13)+8*x^2-400*x)*log(-x+50)-2*x^2*log(13)-4*x^2)*exp(1/20*(2*x^2*log(13)+4*x^2
)/log(-x+50))/(20*x-1000)/log(-x+50)^2,x, algorithm="fricas")

[Out]

e^(1/10*(x^2*log(13) + 2*x^2)/log(-x + 50))

________________________________________________________________________________________

giac [A]  time = 0.15, size = 30, normalized size = 1.43 e(x2log(13)10log(x+50)+x25log(x+50))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*(2*x^2-100*x)*log(13)+8*x^2-400*x)*log(-x+50)-2*x^2*log(13)-4*x^2)*exp(1/20*(2*x^2*log(13)+4*x^2
)/log(-x+50))/(20*x-1000)/log(-x+50)^2,x, algorithm="giac")

[Out]

e^(1/10*x^2*log(13)/log(-x + 50) + 1/5*x^2/log(-x + 50))

________________________________________________________________________________________

maple [A]  time = 0.11, size = 19, normalized size = 0.90




method result size



risch ex2(ln(13)+2)10ln(x+50) 19
norman e2x2ln(13)+4x220ln(x+50) 25



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*(2*x^2-100*x)*ln(13)+8*x^2-400*x)*ln(-x+50)-2*x^2*ln(13)-4*x^2)*exp(1/20*(2*x^2*ln(13)+4*x^2)/ln(-x+50
))/(20*x-1000)/ln(-x+50)^2,x,method=_RETURNVERBOSE)

[Out]

exp(1/10*x^2*(ln(13)+2)/ln(-x+50))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 Exception raised: RuntimeError

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*(2*x^2-100*x)*log(13)+8*x^2-400*x)*log(-x+50)-2*x^2*log(13)-4*x^2)*exp(1/20*(2*x^2*log(13)+4*x^2
)/log(-x+50))/(20*x-1000)/log(-x+50)^2,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: In function CAR, the value of the first argument is  0which is not
 of the expected type LIST

________________________________________________________________________________________

mupad [B]  time = 3.52, size = 23, normalized size = 1.10 ex2ln(13)+2x210ln(50x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(((x^2*log(13))/10 + x^2/5)/log(50 - x))*(2*x^2*log(13) + log(50 - x)*(400*x + 2*log(13)*(100*x - 2*x
^2) - 8*x^2) + 4*x^2))/(log(50 - x)^2*(20*x - 1000)),x)

[Out]

exp((x^2*log(13) + 2*x^2)/(10*log(50 - x)))

________________________________________________________________________________________

sympy [A]  time = 0.51, size = 19, normalized size = 0.90 ex25+x2log(13)10log(50x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*(2*x**2-100*x)*ln(13)+8*x**2-400*x)*ln(-x+50)-2*x**2*ln(13)-4*x**2)*exp(1/20*(2*x**2*ln(13)+4*x*
*2)/ln(-x+50))/(20*x-1000)/ln(-x+50)**2,x)

[Out]

exp((x**2/5 + x**2*log(13)/10)/log(50 - x))

________________________________________________________________________________________