3.41.52 exe12(2+2x)2(1x)+e12(1+x)(2+2x)2e12(1+x)(2+2x)2dx

Optimal. Leaf size=17 4+exe12(2+2x)2+x

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 51, number of rulesintegrand size = 0.078, Rules used = {12, 21, 6688, 6706} x+ex4e12(x+1)2

Antiderivative was successfully verified.

[In]

Int[(E^(x/(E^12*(2 + 2*x)^2))*(1 - x) + E^12*(1 + x)*(2 + 2*x)^2)/(E^12*(1 + x)*(2 + 2*x)^2),x]

[Out]

E^(x/(4*E^12*(1 + x)^2)) + x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

integral=exe12(2+2x)2(1x)+e12(1+x)(2+2x)2(1+x)(2+2x)2dxe12=exe12(2+2x)2(1x)+e12(1+x)(2+2x)2(1+x)3dx4e12=(4e12exe12(2+2x)2(1+x)(1+x)3)dx4e12=xexe12(2+2x)2(1+x)(1+x)3dx4e12=ex4e12(1+x)2+x

________________________________________________________________________________________

Mathematica [A]  time = 0.22, size = 17, normalized size = 1.00 ex4e12(1+x)2+x

Antiderivative was successfully verified.

[In]

Integrate[(E^(x/(E^12*(2 + 2*x)^2))*(1 - x) + E^12*(1 + x)*(2 + 2*x)^2)/(E^12*(1 + x)*(2 + 2*x)^2),x]

[Out]

E^(x/(4*E^12*(1 + x)^2)) + x

________________________________________________________________________________________

fricas [A]  time = 0.62, size = 18, normalized size = 1.06 x+e(xe(12)4(x2+2x+1))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x+1)*exp(x/exp(2)/exp(log(2*x+2)+5)^2)+(x+1)*exp(2)*exp(log(2*x+2)+5)^2)/(x+1)/exp(2)/exp(log(2*x
+2)+5)^2,x, algorithm="fricas")

[Out]

x + e^(1/4*x*e^(-12)/(x^2 + 2*x + 1))

________________________________________________________________________________________

giac [B]  time = 0.15, size = 88, normalized size = 5.18 x+e(12x2e12x2e12+2xe12+e1224xe12x2e12+2xe12+e12+x4(x2e12+2xe12+e12)12e12x2e12+2xe12+e12+12)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x+1)*exp(x/exp(2)/exp(log(2*x+2)+5)^2)+(x+1)*exp(2)*exp(log(2*x+2)+5)^2)/(x+1)/exp(2)/exp(log(2*x
+2)+5)^2,x, algorithm="giac")

[Out]

x + e^(-12*x^2*e^12/(x^2*e^12 + 2*x*e^12 + e^12) - 24*x*e^12/(x^2*e^12 + 2*x*e^12 + e^12) + 1/4*x/(x^2*e^12 +
2*x*e^12 + e^12) - 12*e^12/(x^2*e^12 + 2*x*e^12 + e^12) + 12)

________________________________________________________________________________________

maple [A]  time = 0.10, size = 14, normalized size = 0.82




method result size



risch x+exe124(x+1)2 14
default e2(e12e10e124(x+1)2+e124x+4+e2x) 37
norman (x3e53xe5+e5exe2e10(2x+2)2+x2e5exe2e10(2x+2)2+2xe5exe2e10(2x+2)22e5)e5(x+1)2 95



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1-x)*exp(x/exp(2)/exp(ln(2*x+2)+5)^2)+(x+1)*exp(2)*exp(ln(2*x+2)+5)^2)/(x+1)/exp(2)/exp(ln(2*x+2)+5)^2,x
,method=_RETURNVERBOSE)

[Out]

x+exp(1/4*x*exp(-12)/(x+1)^2)

________________________________________________________________________________________

maxima [B]  time = 0.44, size = 129, normalized size = 7.59 12((2x6x+5x2+2x+16log(x+1))e12+3(4x+3x2+2x+1+2log(x+1))e123(2x+1)e12x2+2x+1e12x2+2x+1+2e(14(x2e12+2xe12+e12)+14(xe12+e12)+12))e(12)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x+1)*exp(x/exp(2)/exp(log(2*x+2)+5)^2)+(x+1)*exp(2)*exp(log(2*x+2)+5)^2)/(x+1)/exp(2)/exp(log(2*x
+2)+5)^2,x, algorithm="maxima")

[Out]

1/2*((2*x - (6*x + 5)/(x^2 + 2*x + 1) - 6*log(x + 1))*e^12 + 3*((4*x + 3)/(x^2 + 2*x + 1) + 2*log(x + 1))*e^12
 - 3*(2*x + 1)*e^12/(x^2 + 2*x + 1) - e^12/(x^2 + 2*x + 1) + 2*e^(-1/4/(x^2*e^12 + 2*x*e^12 + e^12) + 1/4/(x*e
^12 + e^12) + 12))*e^(-12)

________________________________________________________________________________________

mupad [B]  time = 0.68, size = 19, normalized size = 1.12 x+exe124x2+8x+4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-2)*exp(- 2*log(2*x + 2) - 10)*(exp(x*exp(-2)*exp(- 2*log(2*x + 2) - 10))*(x - 1) - exp(2)*exp(2*log
(2*x + 2) + 10)*(x + 1)))/(x + 1),x)

[Out]

x + exp((x*exp(-12))/(8*x + 4*x^2 + 4))

________________________________________________________________________________________

sympy [A]  time = 0.28, size = 14, normalized size = 0.82 x+ex(2x+2)2e12

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-x+1)*exp(x/exp(2)/exp(ln(2*x+2)+5)**2)+(x+1)*exp(2)*exp(ln(2*x+2)+5)**2)/(x+1)/exp(2)/exp(ln(2*x+
2)+5)**2,x)

[Out]

x + exp(x*exp(-12)/(2*x + 2)**2)

________________________________________________________________________________________