3.41.64
Optimal. Leaf size=32
________________________________________________________________________________________
Rubi [F] time = 2.12, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-21 - 3*x + 7*x^2 - x^3 + E^x*(5 + x) + (5 + 2*x - x^2)*Log[x] + (5 - E^x + 4*x - x^2 + (-1 - x)*Log[x])*
Log[x^2])/(4*x - 5*x^2 + x^3 + E^x*(-x + x^2) + (-x + x^2)*Log[x] + (-4*x + E^x*x + x^2 + x*Log[x])*Log[x^2]),
x]
[Out]
-Log[x] + 2*Log[1 - x - Log[x^2]] + 5*Defer[Int][(-4 + E^x + x + Log[x])^(-1), x] + Defer[Int][1/(x*(-4 + E^x
+ x + Log[x])), x] - Defer[Int][x/(-4 + E^x + x + Log[x]), x] - Defer[Int][Log[x]/(-4 + E^x + x + Log[x]), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 37, normalized size = 1.16
Antiderivative was successfully verified.
[In]
Integrate[(-21 - 3*x + 7*x^2 - x^3 + E^x*(5 + x) + (5 + 2*x - x^2)*Log[x] + (5 - E^x + 4*x - x^2 + (-1 - x)*Lo
g[x])*Log[x^2])/(4*x - 5*x^2 + x^3 + E^x*(-x + x^2) + (-x + x^2)*Log[x] + (-4*x + E^x*x + x^2 + x*Log[x])*Log[
x^2]),x]
[Out]
-x - Log[x] + Log[4 - E^x - x - Log[x]] + 2*Log[1 - x - Log[x^2]]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 26, normalized size = 0.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x-1)*log(x)-exp(x)-x^2+4*x+5)*log(x^2)+(-x^2+2*x+5)*log(x)+(5+x)*exp(x)-x^3+7*x^2-3*x-21)/((x*lo
g(x)+exp(x)*x+x^2-4*x)*log(x^2)+log(x)*(x^2-x)+(x^2-x)*exp(x)+x^3-5*x^2+4*x),x, algorithm="fricas")
[Out]
-x + log(x + e^x + log(x) - 4) + 2*log(x + 2*log(x) - 1) - log(x)
________________________________________________________________________________________
giac [A] time = 0.37, size = 28, normalized size = 0.88
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x-1)*log(x)-exp(x)-x^2+4*x+5)*log(x^2)+(-x^2+2*x+5)*log(x)+(5+x)*exp(x)-x^3+7*x^2-3*x-21)/((x*lo
g(x)+exp(x)*x+x^2-4*x)*log(x^2)+log(x)*(x^2-x)+(x^2-x)*exp(x)+x^3-5*x^2+4*x),x, algorithm="giac")
[Out]
-x + log(x + e^x + log(x) - 4) - log(x) + 2*log(-x - 2*log(x) + 1)
________________________________________________________________________________________
maple [A] time = 0.25, size = 27, normalized size = 0.84
|
|
|
method |
result |
size |
|
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-x-1)*ln(x)-exp(x)-x^2+4*x+5)*ln(x^2)+(-x^2+2*x+5)*ln(x)+(5+x)*exp(x)-x^3+7*x^2-3*x-21)/((x*ln(x)+exp(x
)*x+x^2-4*x)*ln(x^2)+ln(x)*(x^2-x)+(x^2-x)*exp(x)+x^3-5*x^2+4*x),x,method=_RETURNVERBOSE)
[Out]
-ln(x)-x+2*ln(-1+x+ln(x^2))+ln(x+exp(x)+ln(x)-4)
________________________________________________________________________________________
maxima [A] time = 0.42, size = 26, normalized size = 0.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x-1)*log(x)-exp(x)-x^2+4*x+5)*log(x^2)+(-x^2+2*x+5)*log(x)+(5+x)*exp(x)-x^3+7*x^2-3*x-21)/((x*lo
g(x)+exp(x)*x+x^2-4*x)*log(x^2)+log(x)*(x^2-x)+(x^2-x)*exp(x)+x^3-5*x^2+4*x),x, algorithm="maxima")
[Out]
-x + log(x + e^x + log(x) - 4) - log(x) + 2*log(1/2*x + log(x) - 1/2)
________________________________________________________________________________________
mupad [B] time = 3.31, size = 60, normalized size = 1.88
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(3*x - exp(x)*(x + 5) + log(x^2)*(exp(x) - 4*x + log(x)*(x + 1) + x^2 - 5) - log(x)*(2*x - x^2 + 5) - 7*x
^2 + x^3 + 21)/(4*x + log(x^2)*(x*exp(x) - 4*x + x*log(x) + x^2) - exp(x)*(x - x^2) - log(x)*(x - x^2) - 5*x^2
+ x^3),x)
[Out]
log(((x + 2)*(x + exp(x) + log(x) - 4))/x) - x - 2*log((x + x*exp(x) + 1)/x) - log(x + 2) + 2*log(((x + log(x^
2) - 1)*(x + x*exp(x) + 1))/x)
________________________________________________________________________________________
sympy [A] time = 0.44, size = 29, normalized size = 0.91
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x-1)*ln(x)-exp(x)-x**2+4*x+5)*ln(x**2)+(-x**2+2*x+5)*ln(x)+(5+x)*exp(x)-x**3+7*x**2-3*x-21)/((x*
ln(x)+exp(x)*x+x**2-4*x)*ln(x**2)+ln(x)*(x**2-x)+(x**2-x)*exp(x)+x**3-5*x**2+4*x),x)
[Out]
-x - log(x) + 2*log(x/2 + log(x) - 1/2) + log(x + exp(x) + log(x) - 4)
________________________________________________________________________________________