3.41.64 213x+7x2x3+ex(5+x)+(5+2xx2)log(x)+(5ex+4xx2+(1x)log(x))log(x2)4x5x2+x3+ex(x+x2)+(x+x2)log(x)+(4x+exx+x2+xlog(x))log(x2)dx

Optimal. Leaf size=32 x+log((4exxlog(x))(1+x+log(x2))2x)

________________________________________________________________________________________

Rubi [F]  time = 2.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 213x+7x2x3+ex(5+x)+(5+2xx2)log(x)+(5ex+4xx2+(1x)log(x))log(x2)4x5x2+x3+ex(x+x2)+(x+x2)log(x)+(4x+exx+x2+xlog(x))log(x2)dx

Verification is not applicable to the result.

[In]

Int[(-21 - 3*x + 7*x^2 - x^3 + E^x*(5 + x) + (5 + 2*x - x^2)*Log[x] + (5 - E^x + 4*x - x^2 + (-1 - x)*Log[x])*
Log[x^2])/(4*x - 5*x^2 + x^3 + E^x*(-x + x^2) + (-x + x^2)*Log[x] + (-4*x + E^x*x + x^2 + x*Log[x])*Log[x^2]),
x]

[Out]

-Log[x] + 2*Log[1 - x - Log[x^2]] + 5*Defer[Int][(-4 + E^x + x + Log[x])^(-1), x] + Defer[Int][1/(x*(-4 + E^x
+ x + Log[x])), x] - Defer[Int][x/(-4 + E^x + x + Log[x]), x] - Defer[Int][Log[x]/(-4 + E^x + x + Log[x]), x]

Rubi steps

integral=213x+7x2x3+ex(5+x)+(5+2xx2)log(x)+(5ex+4xx2+(1x)log(x))log(x2)x(4exxlog(x))(1xlog(x2))dx=(15x+x2+xlog(x)x(4+ex+x+log(x))+5+xlog(x2)x(1+x+log(x2)))dx=15x+x2+xlog(x)x(4+ex+x+log(x))dx+5+xlog(x2)x(1+x+log(x2))dx=(54+ex+x+log(x)1x(4+ex+x+log(x))+x4+ex+x+log(x)+log(x)4+ex+x+log(x))dx+(1x+2(2+x)x(1+x+log(x2)))dx=log(x)+22+xx(1+x+log(x2))dx+514+ex+x+log(x)dx+1x(4+ex+x+log(x))dxx4+ex+x+log(x)dxlog(x)4+ex+x+log(x)dx=log(x)+2log(1xlog(x2))+514+ex+x+log(x)dx+1x(4+ex+x+log(x))dxx4+ex+x+log(x)dxlog(x)4+ex+x+log(x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 37, normalized size = 1.16 xlog(x)+log(4exxlog(x))+2log(1xlog(x2))

Antiderivative was successfully verified.

[In]

Integrate[(-21 - 3*x + 7*x^2 - x^3 + E^x*(5 + x) + (5 + 2*x - x^2)*Log[x] + (5 - E^x + 4*x - x^2 + (-1 - x)*Lo
g[x])*Log[x^2])/(4*x - 5*x^2 + x^3 + E^x*(-x + x^2) + (-x + x^2)*Log[x] + (-4*x + E^x*x + x^2 + x*Log[x])*Log[
x^2]),x]

[Out]

-x - Log[x] + Log[4 - E^x - x - Log[x]] + 2*Log[1 - x - Log[x^2]]

________________________________________________________________________________________

fricas [A]  time = 0.90, size = 26, normalized size = 0.81 x+log(x+ex+log(x)4)+2log(x+2log(x)1)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x-1)*log(x)-exp(x)-x^2+4*x+5)*log(x^2)+(-x^2+2*x+5)*log(x)+(5+x)*exp(x)-x^3+7*x^2-3*x-21)/((x*lo
g(x)+exp(x)*x+x^2-4*x)*log(x^2)+log(x)*(x^2-x)+(x^2-x)*exp(x)+x^3-5*x^2+4*x),x, algorithm="fricas")

[Out]

-x + log(x + e^x + log(x) - 4) + 2*log(x + 2*log(x) - 1) - log(x)

________________________________________________________________________________________

giac [A]  time = 0.37, size = 28, normalized size = 0.88 x+log(x+ex+log(x)4)log(x)+2log(x2log(x)+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x-1)*log(x)-exp(x)-x^2+4*x+5)*log(x^2)+(-x^2+2*x+5)*log(x)+(5+x)*exp(x)-x^3+7*x^2-3*x-21)/((x*lo
g(x)+exp(x)*x+x^2-4*x)*log(x^2)+log(x)*(x^2-x)+(x^2-x)*exp(x)+x^3-5*x^2+4*x),x, algorithm="giac")

[Out]

-x + log(x + e^x + log(x) - 4) - log(x) + 2*log(-x - 2*log(x) + 1)

________________________________________________________________________________________

maple [A]  time = 0.25, size = 27, normalized size = 0.84




method result size



default ln(x)x+2ln(1+x+ln(x2))+ln(x+ex+ln(x)4) 27
risch xln(x)+ln(x+ex+ln(x)4)+2ln(ln(x)i(πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2+πcsgn(ix2)3+2ix2i)4) 77



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-x-1)*ln(x)-exp(x)-x^2+4*x+5)*ln(x^2)+(-x^2+2*x+5)*ln(x)+(5+x)*exp(x)-x^3+7*x^2-3*x-21)/((x*ln(x)+exp(x
)*x+x^2-4*x)*ln(x^2)+ln(x)*(x^2-x)+(x^2-x)*exp(x)+x^3-5*x^2+4*x),x,method=_RETURNVERBOSE)

[Out]

-ln(x)-x+2*ln(-1+x+ln(x^2))+ln(x+exp(x)+ln(x)-4)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 26, normalized size = 0.81 x+log(x+ex+log(x)4)log(x)+2log(12x+log(x)12)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x-1)*log(x)-exp(x)-x^2+4*x+5)*log(x^2)+(-x^2+2*x+5)*log(x)+(5+x)*exp(x)-x^3+7*x^2-3*x-21)/((x*lo
g(x)+exp(x)*x+x^2-4*x)*log(x^2)+log(x)*(x^2-x)+(x^2-x)*exp(x)+x^3-5*x^2+4*x),x, algorithm="maxima")

[Out]

-x + log(x + e^x + log(x) - 4) - log(x) + 2*log(1/2*x + log(x) - 1/2)

________________________________________________________________________________________

mupad [B]  time = 3.31, size = 60, normalized size = 1.88 ln((x+2)(x+ex+ln(x)4)x)x2ln(x+xex+1x)ln(x+2)+2ln((x+ln(x2)1)(x+xex+1)x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(3*x - exp(x)*(x + 5) + log(x^2)*(exp(x) - 4*x + log(x)*(x + 1) + x^2 - 5) - log(x)*(2*x - x^2 + 5) - 7*x
^2 + x^3 + 21)/(4*x + log(x^2)*(x*exp(x) - 4*x + x*log(x) + x^2) - exp(x)*(x - x^2) - log(x)*(x - x^2) - 5*x^2
 + x^3),x)

[Out]

log(((x + 2)*(x + exp(x) + log(x) - 4))/x) - x - 2*log((x + x*exp(x) + 1)/x) - log(x + 2) + 2*log(((x + log(x^
2) - 1)*(x + x*exp(x) + 1))/x)

________________________________________________________________________________________

sympy [A]  time = 0.44, size = 29, normalized size = 0.91 xlog(x)+2log(x2+log(x)12)+log(x+ex+log(x)4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x-1)*ln(x)-exp(x)-x**2+4*x+5)*ln(x**2)+(-x**2+2*x+5)*ln(x)+(5+x)*exp(x)-x**3+7*x**2-3*x-21)/((x*
ln(x)+exp(x)*x+x**2-4*x)*ln(x**2)+ln(x)*(x**2-x)+(x**2-x)*exp(x)+x**3-5*x**2+4*x),x)

[Out]

-x - log(x) + 2*log(x/2 + log(x) - 1/2) + log(x + exp(x) + log(x) - 4)

________________________________________________________________________________________