Optimal. Leaf size=35 \[ -\frac {3-e^2-x}{-5+(3+4 x)^2}+\log \left (\frac {4 x}{4-x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.23, antiderivative size = 37, normalized size of antiderivative = 1.06, number of steps used = 7, number of rules used = 4, integrand size = 70, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {2074, 638, 618, 206} \begin {gather*} -\frac {-x-e^2+3}{4 \left (4 x^2+6 x+1\right )}-\log (4-x)+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 206
Rule 618
Rule 638
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{4-x}+\frac {1}{x}+\frac {10-3 e^2+\left (15-4 e^2\right ) x}{2 \left (1+6 x+4 x^2\right )^2}-\frac {1}{4 \left (1+6 x+4 x^2\right )}\right ) \, dx\\ &=-\log (4-x)+\log (x)-\frac {1}{4} \int \frac {1}{1+6 x+4 x^2} \, dx+\frac {1}{2} \int \frac {10-3 e^2+\left (15-4 e^2\right ) x}{\left (1+6 x+4 x^2\right )^2} \, dx\\ &=-\frac {3-e^2-x}{4 \left (1+6 x+4 x^2\right )}-\log (4-x)+\log (x)+\frac {1}{4} \int \frac {1}{1+6 x+4 x^2} \, dx+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{20-x^2} \, dx,x,6+8 x\right )\\ &=-\frac {3-e^2-x}{4 \left (1+6 x+4 x^2\right )}+\frac {\tanh ^{-1}\left (\frac {3+4 x}{\sqrt {5}}\right )}{4 \sqrt {5}}-\log (4-x)+\log (x)-\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{20-x^2} \, dx,x,6+8 x\right )\\ &=-\frac {3-e^2-x}{4 \left (1+6 x+4 x^2\right )}-\log (4-x)+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 36, normalized size = 1.03 \begin {gather*} \frac {1}{4} \left (\frac {-3+e^2+x}{1+6 x+4 x^2}-4 \log (4-x)+4 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 53, normalized size = 1.51 \begin {gather*} -\frac {4 \, {\left (4 \, x^{2} + 6 \, x + 1\right )} \log \left (x - 4\right ) - 4 \, {\left (4 \, x^{2} + 6 \, x + 1\right )} \log \relax (x) - x - e^{2} + 3}{4 \, {\left (4 \, x^{2} + 6 \, x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 30, normalized size = 0.86 \begin {gather*} \frac {x + e^{2} - 3}{4 \, {\left (4 \, x^{2} + 6 \, x + 1\right )}} - \log \left ({\left | x - 4 \right |}\right ) + \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 30, normalized size = 0.86
method | result | size |
risch | \(\frac {\frac {x}{16}+\frac {{\mathrm e}^{2}}{16}-\frac {3}{16}}{x^{2}+\frac {3}{2} x +\frac {1}{4}}-\ln \left (x -4\right )+\ln \relax (x )\) | \(30\) |
default | \(-\frac {-\frac {x}{4}+\frac {3}{4}-\frac {{\mathrm e}^{2}}{4}}{4 \left (x^{2}+\frac {3}{2} x +\frac {1}{4}\right )}+\ln \relax (x )-\ln \left (x -4\right )\) | \(31\) |
norman | \(\frac {\left (\frac {19}{4}-\frac {3 \,{\mathrm e}^{2}}{2}\right ) x +\left (-{\mathrm e}^{2}+3\right ) x^{2}}{4 x^{2}+6 x +1}-\ln \left (x -4\right )+\ln \relax (x )\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 28, normalized size = 0.80 \begin {gather*} \frac {x + e^{2} - 3}{4 \, {\left (4 \, x^{2} + 6 \, x + 1\right )}} - \log \left (x - 4\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.48, size = 27, normalized size = 0.77 \begin {gather*} 2\,\mathrm {atanh}\left (\frac {x}{2}-1\right )+\frac {x+{\mathrm {e}}^2-3}{16\,x^2+24\,x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.44, size = 24, normalized size = 0.69 \begin {gather*} - \frac {- x - e^{2} + 3}{16 x^{2} + 24 x + 4} + \log {\relax (x )} - \log {\left (x - 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________