Optimal. Leaf size=32 \[ -3+x-\frac {2}{1+e^4 \log (x)+\left (x^2-\log (x)\right ) \log \left (-x+x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 36.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x-x^2+4 x^3+e^4 (-2+2 x)+\left (2-4 x+e^4 \left (-2 x+2 x^2\right )\right ) \log (x)+e^8 \left (-x+x^2\right ) \log ^2(x)+\left (2-2 x-4 x^2+2 x^3+2 x^4+\left (2 x-2 x^2+e^4 \left (-2 x^3+2 x^4\right )\right ) \log (x)+e^4 \left (2 x-2 x^2\right ) \log ^2(x)\right ) \log \left (-x+x^2\right )+\left (-x^5+x^6+\left (2 x^3-2 x^4\right ) \log (x)+\left (-x+x^2\right ) \log ^2(x)\right ) \log ^2\left (-x+x^2\right )}{-x+x^2+e^4 \left (-2 x+2 x^2\right ) \log (x)+e^8 \left (-x+x^2\right ) \log ^2(x)+\left (-2 x^3+2 x^4+\left (2 x-2 x^2+e^4 \left (-2 x^3+2 x^4\right )\right ) \log (x)+e^4 \left (2 x-2 x^2\right ) \log ^2(x)\right ) \log \left (-x+x^2\right )+\left (-x^5+x^6+\left (2 x^3-2 x^4\right ) \log (x)+\left (-x+x^2\right ) \log ^2(x)\right ) \log ^2\left (-x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^4+\left (1-2 e^4\right ) x+x^2-4 x^3-(-1+x) x \log ^2(x) \left (e^4-\log ((-1+x) x)\right )^2-2 \left (1-x-2 x^2+x^3+x^4\right ) \log ((-1+x) x)-(-1+x) x^5 \log ^2((-1+x) x)-2 \log (x) \left (1-\left (2+e^4\right ) x+e^4 x^2+x \left (1-x-e^4 x^2+e^4 x^3\right ) \log ((-1+x) x)-(-1+x) x^3 \log ^2((-1+x) x)\right )}{(1-x) x \left (1+\log (x) \left (e^4-\log ((-1+x) x)\right )+x^2 \log ((-1+x) x)\right )^2} \, dx\\ &=\int \left (1+\frac {2 \left (1-x-2 \left (1-\frac {e^4}{2}\right ) x^2+2 \left (1-\frac {e^4}{2}\right ) x^3+x^4-2 x^5-2 \left (1+e^4\right ) x^2 \log (x)+4 \left (1+\frac {e^4}{2}\right ) x^3 \log (x)+\log ^2(x)-2 x \log ^2(x)\right )}{(1-x) x \left (x^2-\log (x)\right ) \left (1+e^4 \log (x)+x^2 \log ((-1+x) x)-\log (x) \log ((-1+x) x)\right )^2}+\frac {2 \left (-1+2 x^2\right )}{x \left (x^2-\log (x)\right ) \left (1+e^4 \log (x)+x^2 \log ((-1+x) x)-\log (x) \log ((-1+x) x)\right )}\right ) \, dx\\ &=x+2 \int \frac {1-x-2 \left (1-\frac {e^4}{2}\right ) x^2+2 \left (1-\frac {e^4}{2}\right ) x^3+x^4-2 x^5-2 \left (1+e^4\right ) x^2 \log (x)+4 \left (1+\frac {e^4}{2}\right ) x^3 \log (x)+\log ^2(x)-2 x \log ^2(x)}{(1-x) x \left (x^2-\log (x)\right ) \left (1+e^4 \log (x)+x^2 \log ((-1+x) x)-\log (x) \log ((-1+x) x)\right )^2} \, dx+2 \int \frac {-1+2 x^2}{x \left (x^2-\log (x)\right ) \left (1+e^4 \log (x)+x^2 \log ((-1+x) x)-\log (x) \log ((-1+x) x)\right )} \, dx\\ &=x+2 \int \left (\frac {1-x-2 \left (1-\frac {e^4}{2}\right ) x^2+2 \left (1-\frac {e^4}{2}\right ) x^3+x^4-2 x^5-2 \left (1+e^4\right ) x^2 \log (x)+4 \left (1+\frac {e^4}{2}\right ) x^3 \log (x)+\log ^2(x)-2 x \log ^2(x)}{(1-x) \left (x^2-\log (x)\right ) \left (1+e^4 \log (x)+x^2 \log ((-1+x) x)-\log (x) \log ((-1+x) x)\right )^2}+\frac {1-x-2 \left (1-\frac {e^4}{2}\right ) x^2+2 \left (1-\frac {e^4}{2}\right ) x^3+x^4-2 x^5-2 \left (1+e^4\right ) x^2 \log (x)+4 \left (1+\frac {e^4}{2}\right ) x^3 \log (x)+\log ^2(x)-2 x \log ^2(x)}{x \left (x^2-\log (x)\right ) \left (1+e^4 \log (x)+x^2 \log ((-1+x) x)-\log (x) \log ((-1+x) x)\right )^2}\right ) \, dx+2 \int \left (-\frac {1}{x \left (x^2-\log (x)\right ) \left (1+e^4 \log (x)+x^2 \log ((-1+x) x)-\log (x) \log ((-1+x) x)\right )}+\frac {2 x}{\left (x^2-\log (x)\right ) \left (1+e^4 \log (x)+x^2 \log ((-1+x) x)-\log (x) \log ((-1+x) x)\right )}\right ) \, dx\\ &=x+2 \int \frac {1-x-2 \left (1-\frac {e^4}{2}\right ) x^2+2 \left (1-\frac {e^4}{2}\right ) x^3+x^4-2 x^5-2 \left (1+e^4\right ) x^2 \log (x)+4 \left (1+\frac {e^4}{2}\right ) x^3 \log (x)+\log ^2(x)-2 x \log ^2(x)}{(1-x) \left (x^2-\log (x)\right ) \left (1+e^4 \log (x)+x^2 \log ((-1+x) x)-\log (x) \log ((-1+x) x)\right )^2} \, dx+2 \int \frac {1-x-2 \left (1-\frac {e^4}{2}\right ) x^2+2 \left (1-\frac {e^4}{2}\right ) x^3+x^4-2 x^5-2 \left (1+e^4\right ) x^2 \log (x)+4 \left (1+\frac {e^4}{2}\right ) x^3 \log (x)+\log ^2(x)-2 x \log ^2(x)}{x \left (x^2-\log (x)\right ) \left (1+e^4 \log (x)+x^2 \log ((-1+x) x)-\log (x) \log ((-1+x) x)\right )^2} \, dx-2 \int \frac {1}{x \left (x^2-\log (x)\right ) \left (1+e^4 \log (x)+x^2 \log ((-1+x) x)-\log (x) \log ((-1+x) x)\right )} \, dx+4 \int \frac {x}{\left (x^2-\log (x)\right ) \left (1+e^4 \log (x)+x^2 \log ((-1+x) x)-\log (x) \log ((-1+x) x)\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 34, normalized size = 1.06 \begin {gather*} x-\frac {2}{1+e^4 \log (x)+x^2 \log ((-1+x) x)-\log (x) \log ((-1+x) x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.30, size = 54, normalized size = 1.69 \begin {gather*} \frac {x e^{4} \log \relax (x) + {\left (x^{3} - x \log \relax (x)\right )} \log \left (x^{2} - x\right ) + x - 2}{{\left (x^{2} - \log \relax (x)\right )} \log \left (x^{2} - x\right ) + e^{4} \log \relax (x) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.37, size = 216, normalized size = 6.75
method | result | size |
risch | \(x -\frac {4 i}{\pi \,x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x -1\right )\right ) \mathrm {csgn}\left (i x \left (x -1\right )\right )-\pi \,x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2}-\pi \,x^{2} \mathrm {csgn}\left (i \left (x -1\right )\right ) \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2}+\pi \,x^{2} \mathrm {csgn}\left (i x \left (x -1\right )\right )^{3}-\ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x -1\right )\right ) \mathrm {csgn}\left (i x \left (x -1\right )\right )+\ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2}+\ln \relax (x ) \pi \,\mathrm {csgn}\left (i \left (x -1\right )\right ) \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2}-\ln \relax (x ) \pi \mathrm {csgn}\left (i x \left (x -1\right )\right )^{3}+2 i x^{2} \ln \relax (x )+2 i x^{2} \ln \left (x -1\right )+2 i {\mathrm e}^{4} \ln \relax (x )-2 i \ln \relax (x )^{2}-2 i \ln \relax (x ) \ln \left (x -1\right )+2 i}\) | \(216\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 72, normalized size = 2.25 \begin {gather*} -\frac {x \log \relax (x)^{2} - {\left (x^{3} - x \log \relax (x)\right )} \log \left (x - 1\right ) - {\left (x^{3} + x e^{4}\right )} \log \relax (x) - x + 2}{{\left (x^{2} - \log \relax (x)\right )} \log \left (x - 1\right ) + {\left (x^{2} + e^{4}\right )} \log \relax (x) - \log \relax (x)^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {x-{\ln \left (x^2-x\right )}^2\,\left (\ln \relax (x)\,\left (2\,x^3-2\,x^4\right )-{\ln \relax (x)}^2\,\left (x-x^2\right )-x^5+x^6\right )-\ln \left (x^2-x\right )\,\left (2\,x^3-\ln \relax (x)\,\left ({\mathrm {e}}^4\,\left (2\,x^3-2\,x^4\right )-2\,x+2\,x^2\right )-4\,x^2-2\,x+2\,x^4+{\mathrm {e}}^4\,{\ln \relax (x)}^2\,\left (2\,x-2\,x^2\right )+2\right )+\ln \relax (x)\,\left (4\,x+{\mathrm {e}}^4\,\left (2\,x-2\,x^2\right )-2\right )+x^2-4\,x^3-{\mathrm {e}}^4\,\left (2\,x-2\right )+{\mathrm {e}}^8\,{\ln \relax (x)}^2\,\left (x-x^2\right )}{x+\ln \left (x^2-x\right )\,\left (\ln \relax (x)\,\left ({\mathrm {e}}^4\,\left (2\,x^3-2\,x^4\right )-2\,x+2\,x^2\right )+2\,x^3-2\,x^4-{\mathrm {e}}^4\,{\ln \relax (x)}^2\,\left (2\,x-2\,x^2\right )\right )-{\ln \left (x^2-x\right )}^2\,\left (\ln \relax (x)\,\left (2\,x^3-2\,x^4\right )-{\ln \relax (x)}^2\,\left (x-x^2\right )-x^5+x^6\right )-x^2+{\mathrm {e}}^4\,\ln \relax (x)\,\left (2\,x-2\,x^2\right )+{\mathrm {e}}^8\,{\ln \relax (x)}^2\,\left (x-x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.00, size = 24, normalized size = 0.75 \begin {gather*} x - \frac {2}{\left (x^{2} - \log {\relax (x )}\right ) \log {\left (x^{2} - x \right )} + e^{4} \log {\relax (x )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________