3.5.14 e2ex(63e4)+12x23e4x23x2log(2)+(16x+6e4x+2xlog(2))log(3)+(63e4)log2(3)+eex(16x+6e4x+2xlog(2)+ex(2x2+x2log(2))+(126e4)log(3))e2exx4+x62x5log(3)+x4log2(3)+eex(2x5+2x4log(3))dx

Optimal. Leaf size=30 2+e4+x(2log(2))eexx+log(3)x3

________________________________________________________________________________________

Rubi [F]  time = 8.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e2ex(63e4)+12x23e4x23x2log(2)+(16x+6e4x+2xlog(2))log(3)+(63e4)log2(3)+eex(16x+6e4x+2xlog(2)+ex(2x2+x2log(2))+(126e4)log(3))e2exx4+x62x5log(3)+x4log2(3)+eex(2x5+2x4log(3))dx

Verification is not applicable to the result.

[In]

Int[(E^(2*E^x)*(6 - 3*E^4) + 12*x^2 - 3*E^4*x^2 - 3*x^2*Log[2] + (-16*x + 6*E^4*x + 2*x*Log[2])*Log[3] + (6 -
3*E^4)*Log[3]^2 + E^E^x*(-16*x + 6*E^4*x + 2*x*Log[2] + E^x*(-2*x^2 + x^2*Log[2]) + (12 - 6*E^4)*Log[3]))/(E^(
2*E^x)*x^4 + x^6 - 2*x^5*Log[3] + x^4*Log[3]^2 + E^E^x*(-2*x^5 + 2*x^4*Log[3])),x]

[Out]

6*Log[3]^2*Defer[Int][1/(x^4*(-E^E^x + x - Log[3])^2), x] - 3*E^4*Log[3]^2*Defer[Int][1/(x^4*(-E^E^x + x - Log
[3])^2), x] + 12*Log[3]*Defer[Int][E^E^x/(x^4*(-E^E^x + x - Log[3])^2), x] - 6*Log[3]*Defer[Int][E^(4 + E^x)/(
x^4*(-E^E^x + x - Log[3])^2), x] - Log[3]*(16 - Log[4])*Defer[Int][1/(x^3*(-E^E^x + x - Log[3])^2), x] + 3*E^4
*Log[9]*Defer[Int][1/(x^3*(-E^E^x + x - Log[3])^2), x] - (16 - Log[4])*Defer[Int][E^E^x/(x^3*(-E^E^x + x - Log
[3])^2), x] + 6*Defer[Int][E^(4 + E^x)/(x^3*(-E^E^x + x - Log[3])^2), x] - 3*E^4*Defer[Int][1/(x^2*(-E^E^x + x
 - Log[3])^2), x] + (12 - Log[8])*Defer[Int][1/(x^2*(-E^E^x + x - Log[3])^2), x] + 3*(2 - E^4)*Defer[Int][E^(2
*E^x)/(x^4*(E^E^x - x + Log[3])^2), x] - (2 - Log[2])*Defer[Int][E^(E^x + x)/(x^2*(E^E^x - x + Log[3])^2), x]

Rubi steps

integral=e2ex(63e4)+(123e4)x23x2log(2)+(16x+6e4x+2xlog(2))log(3)+(63e4)log2(3)+eex(16x+6e4x+2xlog(2)+ex(2x2+x2log(2))+(126e4)log(3))e2exx4+x62x5log(3)+x4log2(3)+eex(2x5+2x4log(3))dx=e2ex(63e4)+x2(123e43log(2))+(16x+6e4x+2xlog(2))log(3)+(63e4)log2(3)+eex(16x+6e4x+2xlog(2)+ex(2x2+x2log(2))+(126e4)log(3))e2exx4+x62x5log(3)+x4log2(3)+eex(2x5+2x4log(3))dx=6e2ex(1e42)+eex+xx2(2+log(2))+6e4+ex(xlog(3))3e4(xlog(3))2+6log2(3)+eex(12log(3)+x(16+log(4)))+xlog(3)(16+log(4))x2(12+log(8))x4(eexx+log(3))2dx=(3e4(xlog(3))2x4(eex+xlog(3))2+6log2(3)x4(eex+xlog(3))23e2ex(2+e4)x4(eexx+log(3))2+eex+x(2+log(2))x2(eexx+log(3))2+6e4+ex(xlog(3))x4(eexx+log(3))2+eex(12log(3)x(16log(4)))x4(eexx+log(3))2+log(3)(16+log(4))x3(eex+xlog(3))212+log(8)x2(eex+xlog(3))2)dx=6e4+ex(xlog(3))x4(eexx+log(3))2dx(3e4)(xlog(3))2x4(eex+xlog(3))2dx+(3(2e4))e2exx4(eexx+log(3))2dx+(2+log(2))eex+xx2(eexx+log(3))2dx+(6log2(3))1x4(eex+xlog(3))2dx(log(3)(16log(4)))1x3(eex+xlog(3))2dx+(12log(8))1x2(eex+xlog(3))2dx+eex(12log(3)x(16log(4)))x4(eexx+log(3))2dx=6(e4+exx3(eex+xlog(3))2e4+exlog(3)x4(eex+xlog(3))2)dx(3e4)(1x2(eex+xlog(3))2+log2(3)x4(eex+xlog(3))2log(9)x3(eex+xlog(3))2)dx+(3(2e4))e2exx4(eexx+log(3))2dx+(2+log(2))eex+xx2(eexx+log(3))2dx+(6log2(3))1x4(eex+xlog(3))2dx(log(3)(16log(4)))1x3(eex+xlog(3))2dx+(12log(8))1x2(eex+xlog(3))2dx+(12eexlog(3)x4(eex+xlog(3))2+eex(16+log(4))x3(eex+xlog(3))2)dx=6e4+exx3(eex+xlog(3))2dx(3e4)1x2(eex+xlog(3))2dx+(3(2e4))e2exx4(eexx+log(3))2dx+(2+log(2))eex+xx2(eexx+log(3))2dx(6log(3))e4+exx4(eex+xlog(3))2dx+(12log(3))eexx4(eex+xlog(3))2dx+(6log2(3))1x4(eex+xlog(3))2dx(3e4log2(3))1x4(eex+xlog(3))2dx(log(3)(16log(4)))1x3(eex+xlog(3))2dx+(16+log(4))eexx3(eex+xlog(3))2dx+(12log(8))1x2(eex+xlog(3))2dx+(3e4log(9))1x3(eex+xlog(3))2dx

________________________________________________________________________________________

Mathematica [B]  time = 0.22, size = 64, normalized size = 2.13 2+e4x(2log(2)+ex(x(2+log(2))log(2)log(3)+log(9)))(1+ex(xlog(3)))(eexx+log(3))x3

Antiderivative was successfully verified.

[In]

Integrate[(E^(2*E^x)*(6 - 3*E^4) + 12*x^2 - 3*E^4*x^2 - 3*x^2*Log[2] + (-16*x + 6*E^4*x + 2*x*Log[2])*Log[3] +
 (6 - 3*E^4)*Log[3]^2 + E^E^x*(-16*x + 6*E^4*x + 2*x*Log[2] + E^x*(-2*x^2 + x^2*Log[2]) + (12 - 6*E^4)*Log[3])
)/(E^(2*E^x)*x^4 + x^6 - 2*x^5*Log[3] + x^4*Log[3]^2 + E^E^x*(-2*x^5 + 2*x^4*Log[3])),x]

[Out]

(-2 + E^4 - (x*(2 - Log[2] + E^x*(x*(-2 + Log[2]) - Log[2]*Log[3] + Log[9])))/((-1 + E^x*(x - Log[3]))*(E^E^x
- x + Log[3])))/x^3

________________________________________________________________________________________

fricas [A]  time = 0.83, size = 51, normalized size = 1.70 xe4(e42)e(ex)(e42)log(3)+xlog(2)4xx4x3e(ex)x3log(3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*exp(4)+6)*exp(exp(x))^2+((x^2*log(2)-2*x^2)*exp(x)+(-6*exp(4)+12)*log(3)+2*x*log(2)+6*x*exp(4)-
16*x)*exp(exp(x))+(-3*exp(4)+6)*log(3)^2+(2*x*log(2)+6*x*exp(4)-16*x)*log(3)-3*x^2*log(2)-3*x^2*exp(4)+12*x^2)
/(x^4*exp(exp(x))^2+(2*x^4*log(3)-2*x^5)*exp(exp(x))+x^4*log(3)^2-2*x^5*log(3)+x^6),x, algorithm="fricas")

[Out]

(x*e^4 - (e^4 - 2)*e^(e^x) - (e^4 - 2)*log(3) + x*log(2) - 4*x)/(x^4 - x^3*e^(e^x) - x^3*log(3))

________________________________________________________________________________________

giac [B]  time = 0.48, size = 56, normalized size = 1.87 xe4e4log(3)+xlog(2)4xe(ex+4)+2e(ex)+2log(3)x4x3e(ex)x3log(3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*exp(4)+6)*exp(exp(x))^2+((x^2*log(2)-2*x^2)*exp(x)+(-6*exp(4)+12)*log(3)+2*x*log(2)+6*x*exp(4)-
16*x)*exp(exp(x))+(-3*exp(4)+6)*log(3)^2+(2*x*log(2)+6*x*exp(4)-16*x)*log(3)-3*x^2*log(2)-3*x^2*exp(4)+12*x^2)
/(x^4*exp(exp(x))^2+(2*x^4*log(3)-2*x^5)*exp(exp(x))+x^4*log(3)^2-2*x^5*log(3)+x^6),x, algorithm="giac")

[Out]

(x*e^4 - e^4*log(3) + x*log(2) - 4*x - e^(e^x + 4) + 2*e^(e^x) + 2*log(3))/(x^4 - x^3*e^(e^x) - x^3*log(3))

________________________________________________________________________________________

maple [A]  time = 0.07, size = 33, normalized size = 1.10




method result size



risch e4x32x3ln(2)2x2(ln(3)+eexx) 33



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-3*exp(4)+6)*exp(exp(x))^2+((x^2*ln(2)-2*x^2)*exp(x)+(-6*exp(4)+12)*ln(3)+2*x*ln(2)+6*x*exp(4)-16*x)*exp
(exp(x))+(-3*exp(4)+6)*ln(3)^2+(2*x*ln(2)+6*x*exp(4)-16*x)*ln(3)-3*x^2*ln(2)-3*x^2*exp(4)+12*x^2)/(x^4*exp(exp
(x))^2+(2*x^4*ln(3)-2*x^5)*exp(exp(x))+x^4*ln(3)^2-2*x^5*ln(3)+x^6),x,method=_RETURNVERBOSE)

[Out]

exp(4)/x^3-2/x^3-(ln(2)-2)/x^2/(ln(3)+exp(exp(x))-x)

________________________________________________________________________________________

maxima [A]  time = 0.91, size = 50, normalized size = 1.67 x(e4+log(2)4)(e42)e(ex)e4log(3)+2log(3)x4x3e(ex)x3log(3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*exp(4)+6)*exp(exp(x))^2+((x^2*log(2)-2*x^2)*exp(x)+(-6*exp(4)+12)*log(3)+2*x*log(2)+6*x*exp(4)-
16*x)*exp(exp(x))+(-3*exp(4)+6)*log(3)^2+(2*x*log(2)+6*x*exp(4)-16*x)*log(3)-3*x^2*log(2)-3*x^2*exp(4)+12*x^2)
/(x^4*exp(exp(x))^2+(2*x^4*log(3)-2*x^5)*exp(exp(x))+x^4*log(3)^2-2*x^5*log(3)+x^6),x, algorithm="maxima")

[Out]

(x*(e^4 + log(2) - 4) - (e^4 - 2)*e^(e^x) - e^4*log(3) + 2*log(3))/(x^4 - x^3*e^(e^x) - x^3*log(3))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 e2ex(3e46)+ln(3)2(3e46)ln(3)(6xe416x+2xln(2))+3x2e4+3x2ln(2)eex(6xe416x+2xln(2)+ex(x2ln(2)2x2)ln(3)(6e412))12x2x4ln(3)22x5ln(3)+x6+x4e2ex+eex(2x4ln(3)2x5)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(2*exp(x))*(3*exp(4) - 6) + log(3)^2*(3*exp(4) - 6) - log(3)*(6*x*exp(4) - 16*x + 2*x*log(2)) + 3*x^2
*exp(4) + 3*x^2*log(2) - exp(exp(x))*(6*x*exp(4) - 16*x + 2*x*log(2) + exp(x)*(x^2*log(2) - 2*x^2) - log(3)*(6
*exp(4) - 12)) - 12*x^2)/(x^4*log(3)^2 - 2*x^5*log(3) + x^6 + x^4*exp(2*exp(x)) + exp(exp(x))*(2*x^4*log(3) -
2*x^5)),x)

[Out]

-int((exp(2*exp(x))*(3*exp(4) - 6) + log(3)^2*(3*exp(4) - 6) - log(3)*(6*x*exp(4) - 16*x + 2*x*log(2)) + 3*x^2
*exp(4) + 3*x^2*log(2) - exp(exp(x))*(6*x*exp(4) - 16*x + 2*x*log(2) + exp(x)*(x^2*log(2) - 2*x^2) - log(3)*(6
*exp(4) - 12)) - 12*x^2)/(x^4*log(3)^2 - 2*x^5*log(3) + x^6 + x^4*exp(2*exp(x)) + exp(exp(x))*(2*x^4*log(3) -
2*x^5)), x)

________________________________________________________________________________________

sympy [A]  time = 0.21, size = 34, normalized size = 1.13 2log(2)x3+x2eex+x2log(3)63e43x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*exp(4)+6)*exp(exp(x))**2+((x**2*ln(2)-2*x**2)*exp(x)+(-6*exp(4)+12)*ln(3)+2*x*ln(2)+6*x*exp(4)-
16*x)*exp(exp(x))+(-3*exp(4)+6)*ln(3)**2+(2*x*ln(2)+6*x*exp(4)-16*x)*ln(3)-3*x**2*ln(2)-3*x**2*exp(4)+12*x**2)
/(x**4*exp(exp(x))**2+(2*x**4*ln(3)-2*x**5)*exp(exp(x))+x**4*ln(3)**2-2*x**5*ln(3)+x**6),x)

[Out]

(2 - log(2))/(-x**3 + x**2*exp(exp(x)) + x**2*log(3)) - (6 - 3*exp(4))/(3*x**3)

________________________________________________________________________________________