3.5.14
Optimal. Leaf size=30
________________________________________________________________________________________
Rubi [F] time = 8.31, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^(2*E^x)*(6 - 3*E^4) + 12*x^2 - 3*E^4*x^2 - 3*x^2*Log[2] + (-16*x + 6*E^4*x + 2*x*Log[2])*Log[3] + (6 -
3*E^4)*Log[3]^2 + E^E^x*(-16*x + 6*E^4*x + 2*x*Log[2] + E^x*(-2*x^2 + x^2*Log[2]) + (12 - 6*E^4)*Log[3]))/(E^(
2*E^x)*x^4 + x^6 - 2*x^5*Log[3] + x^4*Log[3]^2 + E^E^x*(-2*x^5 + 2*x^4*Log[3])),x]
[Out]
6*Log[3]^2*Defer[Int][1/(x^4*(-E^E^x + x - Log[3])^2), x] - 3*E^4*Log[3]^2*Defer[Int][1/(x^4*(-E^E^x + x - Log
[3])^2), x] + 12*Log[3]*Defer[Int][E^E^x/(x^4*(-E^E^x + x - Log[3])^2), x] - 6*Log[3]*Defer[Int][E^(4 + E^x)/(
x^4*(-E^E^x + x - Log[3])^2), x] - Log[3]*(16 - Log[4])*Defer[Int][1/(x^3*(-E^E^x + x - Log[3])^2), x] + 3*E^4
*Log[9]*Defer[Int][1/(x^3*(-E^E^x + x - Log[3])^2), x] - (16 - Log[4])*Defer[Int][E^E^x/(x^3*(-E^E^x + x - Log
[3])^2), x] + 6*Defer[Int][E^(4 + E^x)/(x^3*(-E^E^x + x - Log[3])^2), x] - 3*E^4*Defer[Int][1/(x^2*(-E^E^x + x
- Log[3])^2), x] + (12 - Log[8])*Defer[Int][1/(x^2*(-E^E^x + x - Log[3])^2), x] + 3*(2 - E^4)*Defer[Int][E^(2
*E^x)/(x^4*(E^E^x - x + Log[3])^2), x] - (2 - Log[2])*Defer[Int][E^(E^x + x)/(x^2*(E^E^x - x + Log[3])^2), x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.22, size = 64, normalized size = 2.13
Antiderivative was successfully verified.
[In]
Integrate[(E^(2*E^x)*(6 - 3*E^4) + 12*x^2 - 3*E^4*x^2 - 3*x^2*Log[2] + (-16*x + 6*E^4*x + 2*x*Log[2])*Log[3] +
(6 - 3*E^4)*Log[3]^2 + E^E^x*(-16*x + 6*E^4*x + 2*x*Log[2] + E^x*(-2*x^2 + x^2*Log[2]) + (12 - 6*E^4)*Log[3])
)/(E^(2*E^x)*x^4 + x^6 - 2*x^5*Log[3] + x^4*Log[3]^2 + E^E^x*(-2*x^5 + 2*x^4*Log[3])),x]
[Out]
(-2 + E^4 - (x*(2 - Log[2] + E^x*(x*(-2 + Log[2]) - Log[2]*Log[3] + Log[9])))/((-1 + E^x*(x - Log[3]))*(E^E^x
- x + Log[3])))/x^3
________________________________________________________________________________________
fricas [A] time = 0.83, size = 51, normalized size = 1.70
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*exp(4)+6)*exp(exp(x))^2+((x^2*log(2)-2*x^2)*exp(x)+(-6*exp(4)+12)*log(3)+2*x*log(2)+6*x*exp(4)-
16*x)*exp(exp(x))+(-3*exp(4)+6)*log(3)^2+(2*x*log(2)+6*x*exp(4)-16*x)*log(3)-3*x^2*log(2)-3*x^2*exp(4)+12*x^2)
/(x^4*exp(exp(x))^2+(2*x^4*log(3)-2*x^5)*exp(exp(x))+x^4*log(3)^2-2*x^5*log(3)+x^6),x, algorithm="fricas")
[Out]
(x*e^4 - (e^4 - 2)*e^(e^x) - (e^4 - 2)*log(3) + x*log(2) - 4*x)/(x^4 - x^3*e^(e^x) - x^3*log(3))
________________________________________________________________________________________
giac [B] time = 0.48, size = 56, normalized size = 1.87
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*exp(4)+6)*exp(exp(x))^2+((x^2*log(2)-2*x^2)*exp(x)+(-6*exp(4)+12)*log(3)+2*x*log(2)+6*x*exp(4)-
16*x)*exp(exp(x))+(-3*exp(4)+6)*log(3)^2+(2*x*log(2)+6*x*exp(4)-16*x)*log(3)-3*x^2*log(2)-3*x^2*exp(4)+12*x^2)
/(x^4*exp(exp(x))^2+(2*x^4*log(3)-2*x^5)*exp(exp(x))+x^4*log(3)^2-2*x^5*log(3)+x^6),x, algorithm="giac")
[Out]
(x*e^4 - e^4*log(3) + x*log(2) - 4*x - e^(e^x + 4) + 2*e^(e^x) + 2*log(3))/(x^4 - x^3*e^(e^x) - x^3*log(3))
________________________________________________________________________________________
maple [A] time = 0.07, size = 33, normalized size = 1.10
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-3*exp(4)+6)*exp(exp(x))^2+((x^2*ln(2)-2*x^2)*exp(x)+(-6*exp(4)+12)*ln(3)+2*x*ln(2)+6*x*exp(4)-16*x)*exp
(exp(x))+(-3*exp(4)+6)*ln(3)^2+(2*x*ln(2)+6*x*exp(4)-16*x)*ln(3)-3*x^2*ln(2)-3*x^2*exp(4)+12*x^2)/(x^4*exp(exp
(x))^2+(2*x^4*ln(3)-2*x^5)*exp(exp(x))+x^4*ln(3)^2-2*x^5*ln(3)+x^6),x,method=_RETURNVERBOSE)
[Out]
exp(4)/x^3-2/x^3-(ln(2)-2)/x^2/(ln(3)+exp(exp(x))-x)
________________________________________________________________________________________
maxima [A] time = 0.91, size = 50, normalized size = 1.67
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*exp(4)+6)*exp(exp(x))^2+((x^2*log(2)-2*x^2)*exp(x)+(-6*exp(4)+12)*log(3)+2*x*log(2)+6*x*exp(4)-
16*x)*exp(exp(x))+(-3*exp(4)+6)*log(3)^2+(2*x*log(2)+6*x*exp(4)-16*x)*log(3)-3*x^2*log(2)-3*x^2*exp(4)+12*x^2)
/(x^4*exp(exp(x))^2+(2*x^4*log(3)-2*x^5)*exp(exp(x))+x^4*log(3)^2-2*x^5*log(3)+x^6),x, algorithm="maxima")
[Out]
(x*(e^4 + log(2) - 4) - (e^4 - 2)*e^(e^x) - e^4*log(3) + 2*log(3))/(x^4 - x^3*e^(e^x) - x^3*log(3))
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(2*exp(x))*(3*exp(4) - 6) + log(3)^2*(3*exp(4) - 6) - log(3)*(6*x*exp(4) - 16*x + 2*x*log(2)) + 3*x^2
*exp(4) + 3*x^2*log(2) - exp(exp(x))*(6*x*exp(4) - 16*x + 2*x*log(2) + exp(x)*(x^2*log(2) - 2*x^2) - log(3)*(6
*exp(4) - 12)) - 12*x^2)/(x^4*log(3)^2 - 2*x^5*log(3) + x^6 + x^4*exp(2*exp(x)) + exp(exp(x))*(2*x^4*log(3) -
2*x^5)),x)
[Out]
-int((exp(2*exp(x))*(3*exp(4) - 6) + log(3)^2*(3*exp(4) - 6) - log(3)*(6*x*exp(4) - 16*x + 2*x*log(2)) + 3*x^2
*exp(4) + 3*x^2*log(2) - exp(exp(x))*(6*x*exp(4) - 16*x + 2*x*log(2) + exp(x)*(x^2*log(2) - 2*x^2) - log(3)*(6
*exp(4) - 12)) - 12*x^2)/(x^4*log(3)^2 - 2*x^5*log(3) + x^6 + x^4*exp(2*exp(x)) + exp(exp(x))*(2*x^4*log(3) -
2*x^5)), x)
________________________________________________________________________________________
sympy [A] time = 0.21, size = 34, normalized size = 1.13
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-3*exp(4)+6)*exp(exp(x))**2+((x**2*ln(2)-2*x**2)*exp(x)+(-6*exp(4)+12)*ln(3)+2*x*ln(2)+6*x*exp(4)-
16*x)*exp(exp(x))+(-3*exp(4)+6)*ln(3)**2+(2*x*ln(2)+6*x*exp(4)-16*x)*ln(3)-3*x**2*ln(2)-3*x**2*exp(4)+12*x**2)
/(x**4*exp(exp(x))**2+(2*x**4*ln(3)-2*x**5)*exp(exp(x))+x**4*ln(3)**2-2*x**5*ln(3)+x**6),x)
[Out]
(2 - log(2))/(-x**3 + x**2*exp(exp(x)) + x**2*log(3)) - (6 - 3*exp(4))/(3*x**3)
________________________________________________________________________________________