Optimal. Leaf size=24 \[ \frac {1}{3}+\frac {8 x \log \left (\frac {x}{2-x}\right )}{e^5+x} \]
________________________________________________________________________________________
Rubi [B] time = 0.28, antiderivative size = 61, normalized size of antiderivative = 2.54, number of steps used = 11, number of rules used = 7, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.119, Rules used = {6688, 12, 6742, 36, 31, 2490, 29} \begin {gather*} -\frac {16 \log (2-x)}{2+e^5}+\frac {16 \log (x)}{2+e^5}-\frac {8 e^5 (2-x) \log \left (\frac {x}{2-x}\right )}{\left (2+e^5\right ) \left (x+e^5\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 31
Rule 36
Rule 2490
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 \left (-\frac {2 \left (e^5+x\right )}{-2+x}+e^5 \log \left (-\frac {x}{-2+x}\right )\right )}{\left (e^5+x\right )^2} \, dx\\ &=8 \int \frac {-\frac {2 \left (e^5+x\right )}{-2+x}+e^5 \log \left (-\frac {x}{-2+x}\right )}{\left (e^5+x\right )^2} \, dx\\ &=8 \int \left (-\frac {2}{(-2+x) \left (e^5+x\right )}+\frac {e^5 \log \left (-\frac {x}{-2+x}\right )}{\left (e^5+x\right )^2}\right ) \, dx\\ &=-\left (16 \int \frac {1}{(-2+x) \left (e^5+x\right )} \, dx\right )+\left (8 e^5\right ) \int \frac {\log \left (-\frac {x}{-2+x}\right )}{\left (e^5+x\right )^2} \, dx\\ &=-\frac {8 e^5 (2-x) \log \left (\frac {x}{2-x}\right )}{\left (2+e^5\right ) \left (e^5+x\right )}-\frac {16 \int \frac {1}{-2+x} \, dx}{2+e^5}+\frac {16 \int \frac {1}{e^5+x} \, dx}{2+e^5}+\frac {\left (16 e^5\right ) \int \frac {1}{x \left (e^5+x\right )} \, dx}{2+e^5}\\ &=-\frac {16 \log (2-x)}{2+e^5}-\frac {8 e^5 (2-x) \log \left (\frac {x}{2-x}\right )}{\left (2+e^5\right ) \left (e^5+x\right )}+\frac {16 \log \left (e^5+x\right )}{2+e^5}+\frac {16 \int \frac {1}{x} \, dx}{2+e^5}-\frac {16 \int \frac {1}{e^5+x} \, dx}{2+e^5}\\ &=-\frac {16 \log (2-x)}{2+e^5}+\frac {16 \log (x)}{2+e^5}-\frac {8 e^5 (2-x) \log \left (\frac {x}{2-x}\right )}{\left (2+e^5\right ) \left (e^5+x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 35, normalized size = 1.46 \begin {gather*} 8 \left (-\log (2-x)+\log (x)-\frac {e^5 \log \left (\frac {x}{2-x}\right )}{e^5+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 18, normalized size = 0.75 \begin {gather*} \frac {8 \, x \log \left (-\frac {x}{x - 2}\right )}{x + e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.79, size = 41, normalized size = 1.71 \begin {gather*} \frac {16 \, x \log \left (-\frac {x}{x - 2}\right )}{{\left (x - 2\right )} {\left (\frac {x e^{5}}{x - 2} + \frac {2 \, x}{x - 2} - e^{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 19, normalized size = 0.79
method | result | size |
norman | \(\frac {8 x \ln \left (-\frac {x}{x -2}\right )}{{\mathrm e}^{5}+x}\) | \(19\) |
risch | \(-\frac {8 \,{\mathrm e}^{5} \ln \left (-\frac {x}{x -2}\right )}{{\mathrm e}^{5}+x}+8 \ln \relax (x )-8 \ln \left (x -2\right )\) | \(31\) |
derivativedivides | \(\frac {16 \ln \left (\left ({\mathrm e}^{5}+2\right ) \left (-1-\frac {2}{x -2}\right )+{\mathrm e}^{5}\right )}{{\mathrm e}^{5}+2}+\frac {4 \,{\mathrm e}^{5} \ln \left (-1-\frac {2}{x -2}\right ) \ln \left (\frac {4 \,{\mathrm e}^{5} \left (-1-\frac {2}{x -2}\right )+{\mathrm e}^{10} \left (-1-\frac {2}{x -2}\right )+2 \,{\mathrm e}^{5}-2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}+{\mathrm e}^{10}-\frac {8}{x -2}-4}{{\mathrm e}^{10}+2 \,{\mathrm e}^{5}-2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}\right )}{\sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}-\frac {4 \,{\mathrm e}^{5} \ln \left (-1-\frac {2}{x -2}\right ) \ln \left (\frac {4 \,{\mathrm e}^{5} \left (-1-\frac {2}{x -2}\right )+{\mathrm e}^{10} \left (-1-\frac {2}{x -2}\right )+2 \,{\mathrm e}^{5}+2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}+{\mathrm e}^{10}-\frac {8}{x -2}-4}{{\mathrm e}^{10}+2 \,{\mathrm e}^{5}+2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}\right )}{\sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}+\frac {4 \,{\mathrm e}^{5} \dilog \left (\frac {4 \,{\mathrm e}^{5} \left (-1-\frac {2}{x -2}\right )+{\mathrm e}^{10} \left (-1-\frac {2}{x -2}\right )+2 \,{\mathrm e}^{5}-2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}+{\mathrm e}^{10}-\frac {8}{x -2}-4}{{\mathrm e}^{10}+2 \,{\mathrm e}^{5}-2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}\right )}{\sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}-\frac {4 \,{\mathrm e}^{5} \dilog \left (\frac {4 \,{\mathrm e}^{5} \left (-1-\frac {2}{x -2}\right )+{\mathrm e}^{10} \left (-1-\frac {2}{x -2}\right )+2 \,{\mathrm e}^{5}+2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}+{\mathrm e}^{10}-\frac {8}{x -2}-4}{{\mathrm e}^{10}+2 \,{\mathrm e}^{5}+2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}\right )}{\sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}\) | \(416\) |
default | \(\frac {16 \ln \left (\left ({\mathrm e}^{5}+2\right ) \left (-1-\frac {2}{x -2}\right )+{\mathrm e}^{5}\right )}{{\mathrm e}^{5}+2}+\frac {4 \,{\mathrm e}^{5} \ln \left (-1-\frac {2}{x -2}\right ) \ln \left (\frac {4 \,{\mathrm e}^{5} \left (-1-\frac {2}{x -2}\right )+{\mathrm e}^{10} \left (-1-\frac {2}{x -2}\right )+2 \,{\mathrm e}^{5}-2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}+{\mathrm e}^{10}-\frac {8}{x -2}-4}{{\mathrm e}^{10}+2 \,{\mathrm e}^{5}-2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}\right )}{\sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}-\frac {4 \,{\mathrm e}^{5} \ln \left (-1-\frac {2}{x -2}\right ) \ln \left (\frac {4 \,{\mathrm e}^{5} \left (-1-\frac {2}{x -2}\right )+{\mathrm e}^{10} \left (-1-\frac {2}{x -2}\right )+2 \,{\mathrm e}^{5}+2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}+{\mathrm e}^{10}-\frac {8}{x -2}-4}{{\mathrm e}^{10}+2 \,{\mathrm e}^{5}+2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}\right )}{\sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}+\frac {4 \,{\mathrm e}^{5} \dilog \left (\frac {4 \,{\mathrm e}^{5} \left (-1-\frac {2}{x -2}\right )+{\mathrm e}^{10} \left (-1-\frac {2}{x -2}\right )+2 \,{\mathrm e}^{5}-2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}+{\mathrm e}^{10}-\frac {8}{x -2}-4}{{\mathrm e}^{10}+2 \,{\mathrm e}^{5}-2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}\right )}{\sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}-\frac {4 \,{\mathrm e}^{5} \dilog \left (\frac {4 \,{\mathrm e}^{5} \left (-1-\frac {2}{x -2}\right )+{\mathrm e}^{10} \left (-1-\frac {2}{x -2}\right )+2 \,{\mathrm e}^{5}+2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}+{\mathrm e}^{10}-\frac {8}{x -2}-4}{{\mathrm e}^{10}+2 \,{\mathrm e}^{5}+2 \sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}\right )}{\sqrt {\left ({\mathrm e}^{5}\right )^{2}-{\mathrm e}^{10}}}\) | \(416\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.98, size = 168, normalized size = 7.00 \begin {gather*} 16 \, {\left (\frac {\log \left (x + e^{5}\right )}{e^{10} + 4 \, e^{5} + 4} - \frac {\log \left (x - 2\right )}{e^{10} + 4 \, e^{5} + 4} - \frac {1}{x {\left (e^{5} + 2\right )} + e^{10} + 2 \, e^{5}}\right )} e^{5} - \frac {8 \, {\left ({\left (e^{10} + 2 \, e^{5}\right )} \log \relax (x) + {\left (x e^{5} - 2 \, e^{5}\right )} \log \left (-x + 2\right )\right )}}{x {\left (e^{5} + 2\right )} + e^{10} + 2 \, e^{5}} + \frac {16 \, e^{5}}{x {\left (e^{5} + 2\right )} + e^{10} + 2 \, e^{5}} + \frac {32 \, \log \left (x + e^{5}\right )}{e^{10} + 4 \, e^{5} + 4} - \frac {16 \, \log \left (x + e^{5}\right )}{e^{5} + 2} - \frac {32 \, \log \left (x - 2\right )}{e^{10} + 4 \, e^{5} + 4} + 8 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.08, size = 26, normalized size = 1.08 \begin {gather*} 16\,\mathrm {atanh}\left (x-1\right )-\frac {8\,{\mathrm {e}}^5\,\ln \left (-\frac {x}{x-2}\right )}{x+{\mathrm {e}}^5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 29, normalized size = 1.21 \begin {gather*} 8 \log {\relax (x )} - 8 \log {\left (x - 2 \right )} - \frac {8 e^{5} \log {\left (- \frac {x}{x - 2} \right )}}{x + e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________