3.5.15
Optimal. Leaf size=24
________________________________________________________________________________________
Rubi [B] time = 0.28, antiderivative size = 61, normalized size of antiderivative = 2.54,
number of steps used = 11, number of rules used = 7, integrand size = 59, = 0.119, Rules used
= {6688, 12, 6742, 36, 31, 2490, 29}
Antiderivative was successfully verified.
[In]
Int[(-16*E^5 - 16*x + E^5*(-16 + 8*x)*Log[-(x/(-2 + x))])/(E^10*(-2 + x) - 2*x^2 + x^3 + E^5*(-4*x + 2*x^2)),x
]
[Out]
(-16*Log[2 - x])/(2 + E^5) + (16*Log[x])/(2 + E^5) - (8*E^5*(2 - x)*Log[x/(2 - x)])/((2 + E^5)*(E^5 + x))
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 29
Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]
Rule 31
Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]
Rule 36
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]
Rule 2490
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(s_.)/((g_.) + (h_.)*(x_))^
2, x_Symbol] :> Simp[((a + b*x)*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s)/((b*g - a*h)*(g + h*x)), x] - Dist[(p*
r*s*(b*c - a*d))/(b*g - a*h), Int[Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1)/((c + d*x)*(g + h*x)), x], x] /
; FreeQ[{a, b, c, d, e, f, g, h, p, q, r, s}, x] && NeQ[b*c - a*d, 0] && EqQ[p + q, 0] && NeQ[b*g - a*h, 0] &&
IGtQ[s, 0]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 35, normalized size = 1.46
Antiderivative was successfully verified.
[In]
Integrate[(-16*E^5 - 16*x + E^5*(-16 + 8*x)*Log[-(x/(-2 + x))])/(E^10*(-2 + x) - 2*x^2 + x^3 + E^5*(-4*x + 2*x
^2)),x]
[Out]
8*(-Log[2 - x] + Log[x] - (E^5*Log[x/(2 - x)])/(E^5 + x))
________________________________________________________________________________________
fricas [A] time = 0.59, size = 18, normalized size = 0.75
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((8*x-16)*exp(5)*log(-x/(x-2))-16*exp(5)-16*x)/((x-2)*exp(5)^2+(2*x^2-4*x)*exp(5)+x^3-2*x^2),x, algo
rithm="fricas")
[Out]
8*x*log(-x/(x - 2))/(x + e^5)
________________________________________________________________________________________
giac [B] time = 0.79, size = 41, normalized size = 1.71
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((8*x-16)*exp(5)*log(-x/(x-2))-16*exp(5)-16*x)/((x-2)*exp(5)^2+(2*x^2-4*x)*exp(5)+x^3-2*x^2),x, algo
rithm="giac")
[Out]
16*x*log(-x/(x - 2))/((x - 2)*(x*e^5/(x - 2) + 2*x/(x - 2) - e^5))
________________________________________________________________________________________
maple [A] time = 0.20, size = 19, normalized size = 0.79
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
derivativedivides |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((8*x-16)*exp(5)*ln(-x/(x-2))-16*exp(5)-16*x)/((x-2)*exp(5)^2+(2*x^2-4*x)*exp(5)+x^3-2*x^2),x,method=_RETU
RNVERBOSE)
[Out]
8*x*ln(-x/(x-2))/(exp(5)+x)
________________________________________________________________________________________
maxima [B] time = 0.98, size = 168, normalized size = 7.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((8*x-16)*exp(5)*log(-x/(x-2))-16*exp(5)-16*x)/((x-2)*exp(5)^2+(2*x^2-4*x)*exp(5)+x^3-2*x^2),x, algo
rithm="maxima")
[Out]
16*(log(x + e^5)/(e^10 + 4*e^5 + 4) - log(x - 2)/(e^10 + 4*e^5 + 4) - 1/(x*(e^5 + 2) + e^10 + 2*e^5))*e^5 - 8*
((e^10 + 2*e^5)*log(x) + (x*e^5 - 2*e^5)*log(-x + 2))/(x*(e^5 + 2) + e^10 + 2*e^5) + 16*e^5/(x*(e^5 + 2) + e^1
0 + 2*e^5) + 32*log(x + e^5)/(e^10 + 4*e^5 + 4) - 16*log(x + e^5)/(e^5 + 2) - 32*log(x - 2)/(e^10 + 4*e^5 + 4)
+ 8*log(x)
________________________________________________________________________________________
mupad [B] time = 1.08, size = 26, normalized size = 1.08
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((16*x + 16*exp(5) - exp(5)*log(-x/(x - 2))*(8*x - 16))/(exp(5)*(4*x - 2*x^2) - exp(10)*(x - 2) + 2*x^2 - x
^3),x)
[Out]
16*atanh(x - 1) - (8*exp(5)*log(-x/(x - 2)))/(x + exp(5))
________________________________________________________________________________________
sympy [A] time = 0.21, size = 29, normalized size = 1.21
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((8*x-16)*exp(5)*ln(-x/(x-2))-16*exp(5)-16*x)/((x-2)*exp(5)**2+(2*x**2-4*x)*exp(5)+x**3-2*x**2),x)
[Out]
8*log(x) - 8*log(x - 2) - 8*exp(5)*log(-x/(x - 2))/(x + exp(5))
________________________________________________________________________________________