3.5.15 16e516x+e5(16+8x)log(x2+x)e10(2+x)2x2+x3+e5(4x+2x2)dx

Optimal. Leaf size=24 13+8xlog(x2x)e5+x

________________________________________________________________________________________

Rubi [B]  time = 0.28, antiderivative size = 61, normalized size of antiderivative = 2.54, number of steps used = 11, number of rules used = 7, integrand size = 59, number of rulesintegrand size = 0.119, Rules used = {6688, 12, 6742, 36, 31, 2490, 29} 16log(2x)2+e5+16log(x)2+e58e5(2x)log(x2x)(2+e5)(x+e5)

Antiderivative was successfully verified.

[In]

Int[(-16*E^5 - 16*x + E^5*(-16 + 8*x)*Log[-(x/(-2 + x))])/(E^10*(-2 + x) - 2*x^2 + x^3 + E^5*(-4*x + 2*x^2)),x
]

[Out]

(-16*Log[2 - x])/(2 + E^5) + (16*Log[x])/(2 + E^5) - (8*E^5*(2 - x)*Log[x/(2 - x)])/((2 + E^5)*(E^5 + x))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 2490

Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(s_.)/((g_.) + (h_.)*(x_))^
2, x_Symbol] :> Simp[((a + b*x)*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s)/((b*g - a*h)*(g + h*x)), x] - Dist[(p*
r*s*(b*c - a*d))/(b*g - a*h), Int[Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1)/((c + d*x)*(g + h*x)), x], x] /
; FreeQ[{a, b, c, d, e, f, g, h, p, q, r, s}, x] && NeQ[b*c - a*d, 0] && EqQ[p + q, 0] && NeQ[b*g - a*h, 0] &&
 IGtQ[s, 0]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=8(2(e5+x)2+x+e5log(x2+x))(e5+x)2dx=82(e5+x)2+x+e5log(x2+x)(e5+x)2dx=8(2(2+x)(e5+x)+e5log(x2+x)(e5+x)2)dx=(161(2+x)(e5+x)dx)+(8e5)log(x2+x)(e5+x)2dx=8e5(2x)log(x2x)(2+e5)(e5+x)1612+xdx2+e5+161e5+xdx2+e5+(16e5)1x(e5+x)dx2+e5=16log(2x)2+e58e5(2x)log(x2x)(2+e5)(e5+x)+16log(e5+x)2+e5+161xdx2+e5161e5+xdx2+e5=16log(2x)2+e5+16log(x)2+e58e5(2x)log(x2x)(2+e5)(e5+x)

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 35, normalized size = 1.46 8(log(2x)+log(x)e5log(x2x)e5+x)

Antiderivative was successfully verified.

[In]

Integrate[(-16*E^5 - 16*x + E^5*(-16 + 8*x)*Log[-(x/(-2 + x))])/(E^10*(-2 + x) - 2*x^2 + x^3 + E^5*(-4*x + 2*x
^2)),x]

[Out]

8*(-Log[2 - x] + Log[x] - (E^5*Log[x/(2 - x)])/(E^5 + x))

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 18, normalized size = 0.75 8xlog(xx2)x+e5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x-16)*exp(5)*log(-x/(x-2))-16*exp(5)-16*x)/((x-2)*exp(5)^2+(2*x^2-4*x)*exp(5)+x^3-2*x^2),x, algo
rithm="fricas")

[Out]

8*x*log(-x/(x - 2))/(x + e^5)

________________________________________________________________________________________

giac [B]  time = 0.79, size = 41, normalized size = 1.71 16xlog(xx2)(x2)(xe5x2+2xx2e5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x-16)*exp(5)*log(-x/(x-2))-16*exp(5)-16*x)/((x-2)*exp(5)^2+(2*x^2-4*x)*exp(5)+x^3-2*x^2),x, algo
rithm="giac")

[Out]

16*x*log(-x/(x - 2))/((x - 2)*(x*e^5/(x - 2) + 2*x/(x - 2) - e^5))

________________________________________________________________________________________

maple [A]  time = 0.20, size = 19, normalized size = 0.79




method result size



norman 8xln(xx2)e5+x 19
risch 8e5ln(xx2)e5+x+8ln(x)8ln(x2) 31
derivativedivides 16ln((e5+2)(12x2)+e5)e5+2+4e5ln(12x2)ln(4e5(12x2)+e10(12x2)+2e52(e5)2e10+e108x24e10+2e52(e5)2e10)(e5)2e104e5ln(12x2)ln(4e5(12x2)+e10(12x2)+2e5+2(e5)2e10+e108x24e10+2e5+2(e5)2e10)(e5)2e10+4e5dilog(4e5(12x2)+e10(12x2)+2e52(e5)2e10+e108x24e10+2e52(e5)2e10)(e5)2e104e5dilog(4e5(12x2)+e10(12x2)+2e5+2(e5)2e10+e108x24e10+2e5+2(e5)2e10)(e5)2e10 416
default 16ln((e5+2)(12x2)+e5)e5+2+4e5ln(12x2)ln(4e5(12x2)+e10(12x2)+2e52(e5)2e10+e108x24e10+2e52(e5)2e10)(e5)2e104e5ln(12x2)ln(4e5(12x2)+e10(12x2)+2e5+2(e5)2e10+e108x24e10+2e5+2(e5)2e10)(e5)2e10+4e5dilog(4e5(12x2)+e10(12x2)+2e52(e5)2e10+e108x24e10+2e52(e5)2e10)(e5)2e104e5dilog(4e5(12x2)+e10(12x2)+2e5+2(e5)2e10+e108x24e10+2e5+2(e5)2e10)(e5)2e10 416



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((8*x-16)*exp(5)*ln(-x/(x-2))-16*exp(5)-16*x)/((x-2)*exp(5)^2+(2*x^2-4*x)*exp(5)+x^3-2*x^2),x,method=_RETU
RNVERBOSE)

[Out]

8*x*ln(-x/(x-2))/(exp(5)+x)

________________________________________________________________________________________

maxima [B]  time = 0.98, size = 168, normalized size = 7.00 16(log(x+e5)e10+4e5+4log(x2)e10+4e5+41x(e5+2)+e10+2e5)e58((e10+2e5)log(x)+(xe52e5)log(x+2))x(e5+2)+e10+2e5+16e5x(e5+2)+e10+2e5+32log(x+e5)e10+4e5+416log(x+e5)e5+232log(x2)e10+4e5+4+8log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x-16)*exp(5)*log(-x/(x-2))-16*exp(5)-16*x)/((x-2)*exp(5)^2+(2*x^2-4*x)*exp(5)+x^3-2*x^2),x, algo
rithm="maxima")

[Out]

16*(log(x + e^5)/(e^10 + 4*e^5 + 4) - log(x - 2)/(e^10 + 4*e^5 + 4) - 1/(x*(e^5 + 2) + e^10 + 2*e^5))*e^5 - 8*
((e^10 + 2*e^5)*log(x) + (x*e^5 - 2*e^5)*log(-x + 2))/(x*(e^5 + 2) + e^10 + 2*e^5) + 16*e^5/(x*(e^5 + 2) + e^1
0 + 2*e^5) + 32*log(x + e^5)/(e^10 + 4*e^5 + 4) - 16*log(x + e^5)/(e^5 + 2) - 32*log(x - 2)/(e^10 + 4*e^5 + 4)
 + 8*log(x)

________________________________________________________________________________________

mupad [B]  time = 1.08, size = 26, normalized size = 1.08 16atanh(x1)8e5ln(xx2)x+e5

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((16*x + 16*exp(5) - exp(5)*log(-x/(x - 2))*(8*x - 16))/(exp(5)*(4*x - 2*x^2) - exp(10)*(x - 2) + 2*x^2 - x
^3),x)

[Out]

16*atanh(x - 1) - (8*exp(5)*log(-x/(x - 2)))/(x + exp(5))

________________________________________________________________________________________

sympy [A]  time = 0.21, size = 29, normalized size = 1.21 8log(x)8log(x2)8e5log(xx2)x+e5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x-16)*exp(5)*ln(-x/(x-2))-16*exp(5)-16*x)/((x-2)*exp(5)**2+(2*x**2-4*x)*exp(5)+x**3-2*x**2),x)

[Out]

8*log(x) - 8*log(x - 2) - 8*exp(5)*log(-x/(x - 2))/(x + exp(5))

________________________________________________________________________________________