3.5.19 30+54x+e2x(1512x12x23x3)+(120x12x2+e2x(60x+36x2+6x3))log(5+x)+(60x+12x2+e2x(30x21x23x3))log2(5+x)20+e2x(204x)+4x+e42x(5+x)dx

Optimal. Leaf size=28 3(x(xxlog(5+x))2)2+e2x

________________________________________________________________________________________

Rubi [F]  time = 48.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 30+54x+e2x(1512x12x23x3)+(120x12x2+e2x(60x+36x2+6x3))log(5+x)+(60x+12x2+e2x(30x21x23x3))log2(5+x)20+e2x(204x)+4x+e42x(5+x)dx

Verification is not applicable to the result.

[In]

Int[(-30 + 54*x + E^(2 - x)*(15 - 12*x - 12*x^2 - 3*x^3) + (-120*x - 12*x^2 + E^(2 - x)*(60*x + 36*x^2 + 6*x^3
))*Log[5 + x] + (60*x + 12*x^2 + E^(2 - x)*(-30*x - 21*x^2 - 3*x^3))*Log[5 + x]^2)/(20 + E^(2 - x)*(-20 - 4*x)
 + 4*x + E^(4 - 2*x)*(5 + x)),x]

[Out]

33*E^(-2 + x) - (3*x)/2 + 3*E^(-2 + x)*x + (3*E^2*x)/(2*(E^2 - 2*E^x)) + (3*x^2)/2 - 3*E^(-2 + x)*x^2 - (3*E^2
*x^2)/(2*(E^2 - 2*E^x)) - (66*ExpIntegralEi[5 + x])/E^7 - (3*x*Log[1 - 2*E^(-2 + x)])/2 - (3*x^2*Log[1 - 2*E^(
-2 + x)])/2 + 15*Log[E^2 - 2*E^x] + 36*E^(-2 + x)*Log[5 + x] - 6*E^(-2 + x)*x*Log[5 + x] + 6*E^(-2 + x)*x^2*Lo
g[5 + x] - (150*ExpIntegralEi[5 + x]*Log[5 + x])/E^7 - (3*PolyLog[2, 2*E^(-2 + x)])/2 - 3*x*PolyLog[2, 2*E^(-2
 + x)] + 3*PolyLog[3, 2*E^(-2 + x)] - 6*Defer[Int][(E^(-2 + 2*x)*x)/(-E^2 + 2*E^x), x] - 12*Log[5 + x]*Defer[I
nt][(E^(-2 + 2*x)*x)/(-E^2 + 2*E^x), x] + 6*Defer[Int][(E^(-2 + 2*x)*x^2)/(-E^2 + 2*E^x), x] - 12*Log[5 + x]*D
efer[Int][(E^(-2 + 2*x)*x^2)/(-E^2 + 2*E^x), x] - 300*Defer[Int][E^(-2 + 2*x)/((-E^2 + 2*E^x)*(5 + x)), x] + 3
00*Log[5 + x]*Defer[Int][E^(-2 + 2*x)/((-E^2 + 2*E^x)*(5 + x)), x] + (150*Defer[Int][ExpIntegralEi[5 + x]/(5 +
 x), x])/E^7 - 60*Defer[Int][(E^(-2 + 2*x)*Log[5 + x])/(-E^2 + 2*E^x), x] + 12*Defer[Int][(E^(2*x)*x^2*Log[5 +
 x])/(-E^2 + 2*E^x)^2, x] - 45*Defer[Int][E^(-2 + x)*Log[5 + x]^2, x] + 12*Defer[Int][(E^(-2 + 2*x)*x*Log[5 +
x]^2)/(-E^2 + 2*E^x), x] - 6*Defer[Int][(E^(2*x)*x^2*Log[5 + x]^2)/(-E^2 + 2*E^x)^2, x] + 6*Defer[Int][(E^(-2
+ 2*x)*x^2*Log[5 + x]^2)/(-E^2 + 2*E^x), x] + 24*Defer[Int][E^(-2 + x)*(5 + x)*Log[5 + x]^2, x] - 3*Defer[Int]
[E^(-2 + x)*(5 + x)^2*Log[5 + x]^2, x] + 12*Defer[Int][Defer[Int][(E^(-2 + 2*x)*x)/(-E^2 + 2*E^x), x]/(5 + x),
 x] + 12*Defer[Int][Defer[Int][(E^(-2 + 2*x)*x^2)/(-E^2 + 2*E^x), x]/(5 + x), x] - 300*Defer[Int][Defer[Int][E
^(-2 + 2*x)/((-E^2 + 2*E^x)*(5 + x)), x]/(5 + x), x]

Rubi steps

integral=e2x(30+54x+e2x(1512x12x23x3)+(120x12x2+e2x(60x+36x2+6x3))log(5+x)+(60x+12x2+e2x(30x21x23x3))log2(5+x))(e22ex)2(5+x)dx=(6e2xx(1+x2xlog(5+x)+xlog2(5+x))(e2+2ex)23e2+x(5+4x+4x2+x320xlog(5+x)12x2log(5+x)2x3log(5+x)+10xlog2(5+x)+7x2log2(5+x)+x3log2(5+x))5+x6e2+2x(5+4x+4x2+x320xlog(5+x)12x2log(5+x)2x3log(5+x)+10xlog2(5+x)+7x2log2(5+x)+x3log2(5+x))(e22ex)(5+x))dx=(3e2+x(5+4x+4x2+x320xlog(5+x)12x2log(5+x)2x3log(5+x)+10xlog2(5+x)+7x2log2(5+x)+x3log2(5+x))5+xdx)6e2xx(1+x2xlog(5+x)+xlog2(5+x))(e2+2ex)2dx6e2+2x(5+4x+4x2+x320xlog(5+x)12x2log(5+x)2x3log(5+x)+10xlog2(5+x)+7x2log2(5+x)+x3log2(5+x))(e22ex)(5+x)dx=(3e2+x(5+4x+4x2+x32x(10+6x+x2)log(5+x)+x(10+7x+x2)log2(5+x))5+xdx)6(e2xx(e2+2ex)2+e2xx2(e2+2ex)22e2xx2log(5+x)(e2+2ex)2+e2xx2log2(5+x)(e2+2ex)2)dx6e2+2x(5+4x+4x2+x32x(10+6x+x2)log(5+x)+x(10+7x+x2)log2(5+x))(e22ex)(5+x)dx=(3(e2+x(5+4x+4x2+x3)5+x2e2+xx(10+6x+x2)log(5+x)5+x+e2+xx(2+x)log2(5+x))dx)+6e2xx(e2+2ex)2dx6e2xx2(e2+2ex)2dx6e2xx2log2(5+x)(e2+2ex)2dx6(5e2+2x(e2+2ex)(5+x)4e2+2xx(e2+2ex)(5+x)4e2+2xx2(e2+2ex)(5+x)e2+2xx3(e2+2ex)(5+x)+20e2+2xxlog(5+x)(e2+2ex)(5+x)+12e2+2xx2log(5+x)(e2+2ex)(5+x)+2e2+2xx3log(5+x)(e2+2ex)(5+x)10e2+2xxlog2(5+x)(e2+2ex)(5+x)7e2+2xx2log2(5+x)(e2+2ex)(5+x)e2+2xx3log2(5+x)(e2+2ex)(5+x))dx+12e2xx2log(5+x)(e2+2ex)2dx=(3e2+x(5+4x+4x2+x3)5+xdx)3e2+xx(2+x)log2(5+x)dx+6e2+2xx3(e2+2ex)(5+x)dx+6(x4+e4x4(e22ex)2e2x2(e22ex))dx6(x24+e4x24(e22ex)2e2x22(e22ex))dx+6e2+xx(10+6x+x2)log(5+x)5+xdx6e2xx2log2(5+x)(e2+2ex)2dx+6e2+2xx3log2(5+x)(e2+2ex)(5+x)dx+12e2xx2log(5+x)(e2+2ex)2dx12e2+2xx3log(5+x)(e2+2ex)(5+x)dx+24e2+2xx(e2+2ex)(5+x)dx+24e2+2xx2(e2+2ex)(5+x)dx30e2+2x(e2+2ex)(5+x)dx+42e2+2xx2log2(5+x)(e2+2ex)(5+x)dx+60e2+2xxlog2(5+x)(e2+2ex)(5+x)dx72e2+2xx2log(5+x)(e2+2ex)(5+x)dx120e2+2xxlog(5+x)(e2+2ex)(5+x)dx=Rest of rules removed due to large latex content

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 37, normalized size = 1.32 3exx(1+x2xlog(5+x)+xlog2(5+x))e2+2ex

Antiderivative was successfully verified.

[In]

Integrate[(-30 + 54*x + E^(2 - x)*(15 - 12*x - 12*x^2 - 3*x^3) + (-120*x - 12*x^2 + E^(2 - x)*(60*x + 36*x^2 +
 6*x^3))*Log[5 + x] + (60*x + 12*x^2 + E^(2 - x)*(-30*x - 21*x^2 - 3*x^3))*Log[5 + x]^2)/(20 + E^(2 - x)*(-20
- 4*x) + 4*x + E^(4 - 2*x)*(5 + x)),x]

[Out]

(3*E^x*x*(-1 + x - 2*x*Log[5 + x] + x*Log[5 + x]^2))/(-E^2 + 2*E^x)

________________________________________________________________________________________

fricas [A]  time = 1.47, size = 38, normalized size = 1.36 3(x2log(x+5)22x2log(x+5)+x2x)e(x+2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-3*x^3-21*x^2-30*x)*exp(2-x)+12*x^2+60*x)*log(5+x)^2+((6*x^3+36*x^2+60*x)*exp(2-x)-12*x^2-120*x)*
log(5+x)+(-3*x^3-12*x^2-12*x+15)*exp(2-x)+54*x-30)/((5+x)*exp(2-x)^2+(-4*x-20)*exp(2-x)+20+4*x),x, algorithm="
fricas")

[Out]

-3*(x^2*log(x + 5)^2 - 2*x^2*log(x + 5) + x^2 - x)/(e^(-x + 2) - 2)

________________________________________________________________________________________

giac [A]  time = 0.49, size = 46, normalized size = 1.64 3(x2exlog(x+5)22x2exlog(x+5)+x2exxex)e22ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-3*x^3-21*x^2-30*x)*exp(2-x)+12*x^2+60*x)*log(5+x)^2+((6*x^3+36*x^2+60*x)*exp(2-x)-12*x^2-120*x)*
log(5+x)+(-3*x^3-12*x^2-12*x+15)*exp(2-x)+54*x-30)/((5+x)*exp(2-x)^2+(-4*x-20)*exp(2-x)+20+4*x),x, algorithm="
giac")

[Out]

-3*(x^2*e^x*log(x + 5)^2 - 2*x^2*e^x*log(x + 5) + x^2*e^x - x*e^x)/(e^2 - 2*e^x)

________________________________________________________________________________________

maple [B]  time = 0.05, size = 58, normalized size = 2.07




method result size



risch 3x2ln(5+x)2e2x2+6x2ln(5+x)e2x23x(x1)e2x2 58



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-3*x^3-21*x^2-30*x)*exp(2-x)+12*x^2+60*x)*ln(5+x)^2+((6*x^3+36*x^2+60*x)*exp(2-x)-12*x^2-120*x)*ln(5+x)
+(-3*x^3-12*x^2-12*x+15)*exp(2-x)+54*x-30)/((5+x)*exp(2-x)^2+(-4*x-20)*exp(2-x)+20+4*x),x,method=_RETURNVERBOS
E)

[Out]

-3*x^2/(exp(2-x)-2)*ln(5+x)^2+6*x^2/(exp(2-x)-2)*ln(5+x)-3*x*(x-1)/(exp(2-x)-2)

________________________________________________________________________________________

maxima [A]  time = 0.76, size = 45, normalized size = 1.61 3(x2exlog(x+5)22x2exlog(x+5)+(x2x)ex)e22ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-3*x^3-21*x^2-30*x)*exp(2-x)+12*x^2+60*x)*log(5+x)^2+((6*x^3+36*x^2+60*x)*exp(2-x)-12*x^2-120*x)*
log(5+x)+(-3*x^3-12*x^2-12*x+15)*exp(2-x)+54*x-30)/((5+x)*exp(2-x)^2+(-4*x-20)*exp(2-x)+20+4*x),x, algorithm="
maxima")

[Out]

-3*(x^2*e^x*log(x + 5)^2 - 2*x^2*e^x*log(x + 5) + (x^2 - x)*e^x)/(e^2 - 2*e^x)

________________________________________________________________________________________

mupad [B]  time = 0.28, size = 35, normalized size = 1.25 3xex2(xln(x+5)22xln(x+5)+x1)2ex21

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(2 - x)*(12*x + 12*x^2 + 3*x^3 - 15) - log(x + 5)^2*(60*x - exp(2 - x)*(30*x + 21*x^2 + 3*x^3) + 12*x
^2) - 54*x + log(x + 5)*(120*x - exp(2 - x)*(60*x + 36*x^2 + 6*x^3) + 12*x^2) + 30)/(4*x - exp(2 - x)*(4*x + 2
0) + exp(4 - 2*x)*(x + 5) + 20),x)

[Out]

(3*x*exp(x - 2)*(x - 2*x*log(x + 5) + x*log(x + 5)^2 - 1))/(2*exp(x - 2) - 1)

________________________________________________________________________________________

sympy [A]  time = 0.34, size = 36, normalized size = 1.29 3x2log(x+5)2+6x2log(x+5)3x2+3xe2x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-3*x**3-21*x**2-30*x)*exp(2-x)+12*x**2+60*x)*ln(5+x)**2+((6*x**3+36*x**2+60*x)*exp(2-x)-12*x**2-1
20*x)*ln(5+x)+(-3*x**3-12*x**2-12*x+15)*exp(2-x)+54*x-30)/((5+x)*exp(2-x)**2+(-4*x-20)*exp(2-x)+20+4*x),x)

[Out]

(-3*x**2*log(x + 5)**2 + 6*x**2*log(x + 5) - 3*x**2 + 3*x)/(exp(2 - x) - 2)

________________________________________________________________________________________