3.5.19
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [F] time = 48.98, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-30 + 54*x + E^(2 - x)*(15 - 12*x - 12*x^2 - 3*x^3) + (-120*x - 12*x^2 + E^(2 - x)*(60*x + 36*x^2 + 6*x^3
))*Log[5 + x] + (60*x + 12*x^2 + E^(2 - x)*(-30*x - 21*x^2 - 3*x^3))*Log[5 + x]^2)/(20 + E^(2 - x)*(-20 - 4*x)
+ 4*x + E^(4 - 2*x)*(5 + x)),x]
[Out]
33*E^(-2 + x) - (3*x)/2 + 3*E^(-2 + x)*x + (3*E^2*x)/(2*(E^2 - 2*E^x)) + (3*x^2)/2 - 3*E^(-2 + x)*x^2 - (3*E^2
*x^2)/(2*(E^2 - 2*E^x)) - (66*ExpIntegralEi[5 + x])/E^7 - (3*x*Log[1 - 2*E^(-2 + x)])/2 - (3*x^2*Log[1 - 2*E^(
-2 + x)])/2 + 15*Log[E^2 - 2*E^x] + 36*E^(-2 + x)*Log[5 + x] - 6*E^(-2 + x)*x*Log[5 + x] + 6*E^(-2 + x)*x^2*Lo
g[5 + x] - (150*ExpIntegralEi[5 + x]*Log[5 + x])/E^7 - (3*PolyLog[2, 2*E^(-2 + x)])/2 - 3*x*PolyLog[2, 2*E^(-2
+ x)] + 3*PolyLog[3, 2*E^(-2 + x)] - 6*Defer[Int][(E^(-2 + 2*x)*x)/(-E^2 + 2*E^x), x] - 12*Log[5 + x]*Defer[I
nt][(E^(-2 + 2*x)*x)/(-E^2 + 2*E^x), x] + 6*Defer[Int][(E^(-2 + 2*x)*x^2)/(-E^2 + 2*E^x), x] - 12*Log[5 + x]*D
efer[Int][(E^(-2 + 2*x)*x^2)/(-E^2 + 2*E^x), x] - 300*Defer[Int][E^(-2 + 2*x)/((-E^2 + 2*E^x)*(5 + x)), x] + 3
00*Log[5 + x]*Defer[Int][E^(-2 + 2*x)/((-E^2 + 2*E^x)*(5 + x)), x] + (150*Defer[Int][ExpIntegralEi[5 + x]/(5 +
x), x])/E^7 - 60*Defer[Int][(E^(-2 + 2*x)*Log[5 + x])/(-E^2 + 2*E^x), x] + 12*Defer[Int][(E^(2*x)*x^2*Log[5 +
x])/(-E^2 + 2*E^x)^2, x] - 45*Defer[Int][E^(-2 + x)*Log[5 + x]^2, x] + 12*Defer[Int][(E^(-2 + 2*x)*x*Log[5 +
x]^2)/(-E^2 + 2*E^x), x] - 6*Defer[Int][(E^(2*x)*x^2*Log[5 + x]^2)/(-E^2 + 2*E^x)^2, x] + 6*Defer[Int][(E^(-2
+ 2*x)*x^2*Log[5 + x]^2)/(-E^2 + 2*E^x), x] + 24*Defer[Int][E^(-2 + x)*(5 + x)*Log[5 + x]^2, x] - 3*Defer[Int]
[E^(-2 + x)*(5 + x)^2*Log[5 + x]^2, x] + 12*Defer[Int][Defer[Int][(E^(-2 + 2*x)*x)/(-E^2 + 2*E^x), x]/(5 + x),
x] + 12*Defer[Int][Defer[Int][(E^(-2 + 2*x)*x^2)/(-E^2 + 2*E^x), x]/(5 + x), x] - 300*Defer[Int][Defer[Int][E
^(-2 + 2*x)/((-E^2 + 2*E^x)*(5 + x)), x]/(5 + x), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 37, normalized size = 1.32
Antiderivative was successfully verified.
[In]
Integrate[(-30 + 54*x + E^(2 - x)*(15 - 12*x - 12*x^2 - 3*x^3) + (-120*x - 12*x^2 + E^(2 - x)*(60*x + 36*x^2 +
6*x^3))*Log[5 + x] + (60*x + 12*x^2 + E^(2 - x)*(-30*x - 21*x^2 - 3*x^3))*Log[5 + x]^2)/(20 + E^(2 - x)*(-20
- 4*x) + 4*x + E^(4 - 2*x)*(5 + x)),x]
[Out]
(3*E^x*x*(-1 + x - 2*x*Log[5 + x] + x*Log[5 + x]^2))/(-E^2 + 2*E^x)
________________________________________________________________________________________
fricas [A] time = 1.47, size = 38, normalized size = 1.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-3*x^3-21*x^2-30*x)*exp(2-x)+12*x^2+60*x)*log(5+x)^2+((6*x^3+36*x^2+60*x)*exp(2-x)-12*x^2-120*x)*
log(5+x)+(-3*x^3-12*x^2-12*x+15)*exp(2-x)+54*x-30)/((5+x)*exp(2-x)^2+(-4*x-20)*exp(2-x)+20+4*x),x, algorithm="
fricas")
[Out]
-3*(x^2*log(x + 5)^2 - 2*x^2*log(x + 5) + x^2 - x)/(e^(-x + 2) - 2)
________________________________________________________________________________________
giac [A] time = 0.49, size = 46, normalized size = 1.64
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-3*x^3-21*x^2-30*x)*exp(2-x)+12*x^2+60*x)*log(5+x)^2+((6*x^3+36*x^2+60*x)*exp(2-x)-12*x^2-120*x)*
log(5+x)+(-3*x^3-12*x^2-12*x+15)*exp(2-x)+54*x-30)/((5+x)*exp(2-x)^2+(-4*x-20)*exp(2-x)+20+4*x),x, algorithm="
giac")
[Out]
-3*(x^2*e^x*log(x + 5)^2 - 2*x^2*e^x*log(x + 5) + x^2*e^x - x*e^x)/(e^2 - 2*e^x)
________________________________________________________________________________________
maple [B] time = 0.05, size = 58, normalized size = 2.07
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-3*x^3-21*x^2-30*x)*exp(2-x)+12*x^2+60*x)*ln(5+x)^2+((6*x^3+36*x^2+60*x)*exp(2-x)-12*x^2-120*x)*ln(5+x)
+(-3*x^3-12*x^2-12*x+15)*exp(2-x)+54*x-30)/((5+x)*exp(2-x)^2+(-4*x-20)*exp(2-x)+20+4*x),x,method=_RETURNVERBOS
E)
[Out]
-3*x^2/(exp(2-x)-2)*ln(5+x)^2+6*x^2/(exp(2-x)-2)*ln(5+x)-3*x*(x-1)/(exp(2-x)-2)
________________________________________________________________________________________
maxima [A] time = 0.76, size = 45, normalized size = 1.61
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-3*x^3-21*x^2-30*x)*exp(2-x)+12*x^2+60*x)*log(5+x)^2+((6*x^3+36*x^2+60*x)*exp(2-x)-12*x^2-120*x)*
log(5+x)+(-3*x^3-12*x^2-12*x+15)*exp(2-x)+54*x-30)/((5+x)*exp(2-x)^2+(-4*x-20)*exp(2-x)+20+4*x),x, algorithm="
maxima")
[Out]
-3*(x^2*e^x*log(x + 5)^2 - 2*x^2*e^x*log(x + 5) + (x^2 - x)*e^x)/(e^2 - 2*e^x)
________________________________________________________________________________________
mupad [B] time = 0.28, size = 35, normalized size = 1.25
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(2 - x)*(12*x + 12*x^2 + 3*x^3 - 15) - log(x + 5)^2*(60*x - exp(2 - x)*(30*x + 21*x^2 + 3*x^3) + 12*x
^2) - 54*x + log(x + 5)*(120*x - exp(2 - x)*(60*x + 36*x^2 + 6*x^3) + 12*x^2) + 30)/(4*x - exp(2 - x)*(4*x + 2
0) + exp(4 - 2*x)*(x + 5) + 20),x)
[Out]
(3*x*exp(x - 2)*(x - 2*x*log(x + 5) + x*log(x + 5)^2 - 1))/(2*exp(x - 2) - 1)
________________________________________________________________________________________
sympy [A] time = 0.34, size = 36, normalized size = 1.29
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-3*x**3-21*x**2-30*x)*exp(2-x)+12*x**2+60*x)*ln(5+x)**2+((6*x**3+36*x**2+60*x)*exp(2-x)-12*x**2-1
20*x)*ln(5+x)+(-3*x**3-12*x**2-12*x+15)*exp(2-x)+54*x-30)/((5+x)*exp(2-x)**2+(-4*x-20)*exp(2-x)+20+4*x),x)
[Out]
(-3*x**2*log(x + 5)**2 + 6*x**2*log(x + 5) - 3*x**2 + 3*x)/(exp(2 - x) - 2)
________________________________________________________________________________________