Optimal. Leaf size=32 \[ x \left (e^{e^{e^3}} x+\left (-7-x+\frac {x}{2+e^x}-\log (5)\right )^2\right ) \]
________________________________________________________________________________________
Rubi [C] time = 3.74, antiderivative size = 381, normalized size of antiderivative = 11.91, number of steps used = 72, number of rules used = 12, integrand size = 186, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {6741, 6742, 2185, 2184, 2190, 2531, 6609, 2282, 6589, 2191, 2279, 2391} \begin {gather*} -\frac {9}{2} x \text {Li}_2\left (-\frac {e^x}{2}\right )-\frac {3}{2} \text {Li}_2\left (-\frac {e^x}{2}\right )+\frac {9}{2} \text {Li}_3\left (-\frac {e^x}{2}\right )+\frac {1}{2} x (25+\log (625)) \text {Li}_2\left (-\frac {e^x}{2}\right )-2 x (4+\log (5)) \text {Li}_2\left (-\frac {e^x}{2}\right )-\frac {1}{2} (25+\log (625)) \text {Li}_2\left (-\frac {e^x}{2}\right )+2 (7+\log (5)) \text {Li}_2\left (-\frac {e^x}{2}\right )-\frac {1}{2} (25+\log (625)) \text {Li}_3\left (-\frac {e^x}{2}\right )+2 (4+\log (5)) \text {Li}_3\left (-\frac {e^x}{2}\right )-\frac {2 x^3}{e^x+2}+\frac {x^3}{\left (e^x+2\right )^2}+\frac {7 x^3}{4}-\frac {1}{12} x^3 (25+\log (625))+\frac {1}{3} x^3 (4+\log (5))-\frac {3 x^2}{2 \left (e^x+2\right )}+\frac {3 x^2}{4}+\frac {1}{4} x^2 (25+\log (625)) \log \left (\frac {e^x}{2}+1\right )-x^2 (4+\log (5)) \log \left (\frac {e^x}{2}+1\right )-\frac {9}{4} x^2 \log \left (\frac {e^x}{2}+1\right )-\frac {x^2 (25+\log (625))}{2 \left (e^x+2\right )}+\frac {1}{4} x^2 (25+\log (625))+x^2 \left (14+e^{e^{e^3}}+\log (25)\right )-x^2 (7+\log (5))-\frac {1}{2} x (25+\log (625)) \log \left (\frac {e^x}{2}+1\right )+2 x (7+\log (5)) \log \left (\frac {e^x}{2}+1\right )-\frac {3}{2} x \log \left (\frac {e^x}{2}+1\right )+x (7+\log (5))^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2184
Rule 2185
Rule 2190
Rule 2191
Rule 2279
Rule 2282
Rule 2391
Rule 2531
Rule 6589
Rule 6609
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {112 x+6 x^2+e^{e^{e^3}} \left (16 x+24 e^x x+12 e^{2 x} x+2 e^{3 x} x\right )+(112+16 x) \log (5)+392 \left (1+\frac {\log ^2(5)}{49}\right )+e^{3 x} \left (49+28 x+3 x^2+(14+4 x) \log (5)+\log ^2(5)\right )+e^{2 x} \left (294+140 x+26 x^2+2 x^3+\left (84+20 x+2 x^2\right ) \log (5)+6 \log ^2(5)\right )+e^x \left (588+224 x+43 x^2+2 x^3+\left (168+32 x+4 x^2\right ) \log (5)+12 \log ^2(5)\right )}{\left (2+e^x\right )^3} \, dx\\ &=\int \left (3 x^2+\frac {4 x^3}{\left (2+e^x\right )^3}+\frac {2 x \left (x^2+x (4+\log (5))-2 (7+\log (5))\right )}{2+e^x}+49 \left (1+\frac {1}{49} \log (5) (14+\log (5))\right )+28 x \left (1+\frac {1}{14} \left (e^{e^{e^3}}+\log (25)\right )\right )-\frac {x^2 (25+6 x+\log (625))}{\left (2+e^x\right )^2}\right ) \, dx\\ &=x^3+x (7+\log (5))^2+x^2 \left (14+e^{e^{e^3}}+\log (25)\right )+2 \int \frac {x \left (x^2+x (4+\log (5))-2 (7+\log (5))\right )}{2+e^x} \, dx+4 \int \frac {x^3}{\left (2+e^x\right )^3} \, dx-\int \frac {x^2 (25+6 x+\log (625))}{\left (2+e^x\right )^2} \, dx\\ &=x^3+x (7+\log (5))^2+x^2 \left (14+e^{e^{e^3}}+\log (25)\right )-2 \int \frac {e^x x^3}{\left (2+e^x\right )^3} \, dx+2 \int \frac {x^3}{\left (2+e^x\right )^2} \, dx+2 \int \left (\frac {x^3}{2+e^x}+\frac {x^2 (4+\log (5))}{2+e^x}-\frac {2 x (7+\log (5))}{2+e^x}\right ) \, dx-\int \left (\frac {6 x^3}{\left (2+e^x\right )^2}+\frac {x^2 (25+\log (625))}{\left (2+e^x\right )^2}\right ) \, dx\\ &=x^3+\frac {x^3}{\left (2+e^x\right )^2}+x (7+\log (5))^2+x^2 \left (14+e^{e^{e^3}}+\log (25)\right )+2 \int \frac {x^3}{2+e^x} \, dx-3 \int \frac {x^2}{\left (2+e^x\right )^2} \, dx-6 \int \frac {x^3}{\left (2+e^x\right )^2} \, dx+(2 (4+\log (5))) \int \frac {x^2}{2+e^x} \, dx-(4 (7+\log (5))) \int \frac {x}{2+e^x} \, dx-(25+\log (625)) \int \frac {x^2}{\left (2+e^x\right )^2} \, dx-\int \frac {e^x x^3}{\left (2+e^x\right )^2} \, dx+\int \frac {x^3}{2+e^x} \, dx\\ &=x^3+\frac {x^3}{\left (2+e^x\right )^2}+\frac {x^3}{2+e^x}+\frac {3 x^4}{8}+\frac {1}{3} x^3 (4+\log (5))-x^2 (7+\log (5))+x (7+\log (5))^2+x^2 \left (14+e^{e^{e^3}}+\log (25)\right )-\frac {1}{2} \int \frac {e^x x^3}{2+e^x} \, dx+\frac {3}{2} \int \frac {e^x x^2}{\left (2+e^x\right )^2} \, dx-\frac {3}{2} \int \frac {x^2}{2+e^x} \, dx-3 \int \frac {x^2}{2+e^x} \, dx+3 \int \frac {e^x x^3}{\left (2+e^x\right )^2} \, dx-3 \int \frac {x^3}{2+e^x} \, dx+(-4-\log (5)) \int \frac {e^x x^2}{2+e^x} \, dx+(2 (7+\log (5))) \int \frac {e^x x}{2+e^x} \, dx-\frac {1}{2} (-25-\log (625)) \int \frac {e^x x^2}{\left (2+e^x\right )^2} \, dx-\frac {1}{2} (25+\log (625)) \int \frac {x^2}{2+e^x} \, dx-\int \frac {e^x x^3}{2+e^x} \, dx\\ &=-\frac {3 x^2}{2 \left (2+e^x\right )}+\frac {x^3}{4}+\frac {x^3}{\left (2+e^x\right )^2}-\frac {2 x^3}{2+e^x}+\frac {1}{3} x^3 (4+\log (5))-x^2 (7+\log (5))+x (7+\log (5))^2+x^2 \left (14+e^{e^{e^3}}+\log (25)\right )-\frac {x^2 (25+\log (625))}{2 \left (2+e^x\right )}-\frac {1}{12} x^3 (25+\log (625))-\frac {3}{2} x^3 \log \left (1+\frac {e^x}{2}\right )-x^2 (4+\log (5)) \log \left (1+\frac {e^x}{2}\right )+2 x (7+\log (5)) \log \left (1+\frac {e^x}{2}\right )+\frac {3}{4} \int \frac {e^x x^2}{2+e^x} \, dx+\frac {3}{2} \int \frac {e^x x^2}{2+e^x} \, dx+\frac {3}{2} \int \frac {e^x x^3}{2+e^x} \, dx+\frac {3}{2} \int x^2 \log \left (1+\frac {e^x}{2}\right ) \, dx+3 \int \frac {x}{2+e^x} \, dx+3 \int x^2 \log \left (1+\frac {e^x}{2}\right ) \, dx+9 \int \frac {x^2}{2+e^x} \, dx+(2 (4+\log (5))) \int x \log \left (1+\frac {e^x}{2}\right ) \, dx-(2 (7+\log (5))) \int \log \left (1+\frac {e^x}{2}\right ) \, dx-\frac {1}{4} (-25-\log (625)) \int \frac {e^x x^2}{2+e^x} \, dx-(-25-\log (625)) \int \frac {x}{2+e^x} \, dx\\ &=\frac {3 x^2}{4}-\frac {3 x^2}{2 \left (2+e^x\right )}+\frac {7 x^3}{4}+\frac {x^3}{\left (2+e^x\right )^2}-\frac {2 x^3}{2+e^x}+\frac {1}{3} x^3 (4+\log (5))-x^2 (7+\log (5))+x (7+\log (5))^2+x^2 \left (14+e^{e^{e^3}}+\log (25)\right )+\frac {1}{4} x^2 (25+\log (625))-\frac {x^2 (25+\log (625))}{2 \left (2+e^x\right )}-\frac {1}{12} x^3 (25+\log (625))+\frac {9}{4} x^2 \log \left (1+\frac {e^x}{2}\right )-x^2 (4+\log (5)) \log \left (1+\frac {e^x}{2}\right )+2 x (7+\log (5)) \log \left (1+\frac {e^x}{2}\right )+\frac {1}{4} x^2 (25+\log (625)) \log \left (1+\frac {e^x}{2}\right )-\frac {9}{2} x^2 \text {Li}_2\left (-\frac {e^x}{2}\right )-2 x (4+\log (5)) \text {Li}_2\left (-\frac {e^x}{2}\right )-\frac {3}{2} \int \frac {e^x x}{2+e^x} \, dx-\frac {3}{2} \int x \log \left (1+\frac {e^x}{2}\right ) \, dx-3 \int x \log \left (1+\frac {e^x}{2}\right ) \, dx+3 \int x \text {Li}_2\left (-\frac {e^x}{2}\right ) \, dx-\frac {9}{2} \int \frac {e^x x^2}{2+e^x} \, dx-\frac {9}{2} \int x^2 \log \left (1+\frac {e^x}{2}\right ) \, dx+6 \int x \text {Li}_2\left (-\frac {e^x}{2}\right ) \, dx+(2 (4+\log (5))) \int \text {Li}_2\left (-\frac {e^x}{2}\right ) \, dx-(2 (7+\log (5))) \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{2}\right )}{x} \, dx,x,e^x\right )-\frac {1}{2} (25+\log (625)) \int \frac {e^x x}{2+e^x} \, dx-\frac {1}{2} (25+\log (625)) \int x \log \left (1+\frac {e^x}{2}\right ) \, dx\\ &=\frac {3 x^2}{4}-\frac {3 x^2}{2 \left (2+e^x\right )}+\frac {7 x^3}{4}+\frac {x^3}{\left (2+e^x\right )^2}-\frac {2 x^3}{2+e^x}+\frac {1}{3} x^3 (4+\log (5))-x^2 (7+\log (5))+x (7+\log (5))^2+x^2 \left (14+e^{e^{e^3}}+\log (25)\right )+\frac {1}{4} x^2 (25+\log (625))-\frac {x^2 (25+\log (625))}{2 \left (2+e^x\right )}-\frac {1}{12} x^3 (25+\log (625))-\frac {3}{2} x \log \left (1+\frac {e^x}{2}\right )-\frac {9}{4} x^2 \log \left (1+\frac {e^x}{2}\right )-x^2 (4+\log (5)) \log \left (1+\frac {e^x}{2}\right )+2 x (7+\log (5)) \log \left (1+\frac {e^x}{2}\right )-\frac {1}{2} x (25+\log (625)) \log \left (1+\frac {e^x}{2}\right )+\frac {1}{4} x^2 (25+\log (625)) \log \left (1+\frac {e^x}{2}\right )+\frac {9}{2} x \text {Li}_2\left (-\frac {e^x}{2}\right )-2 x (4+\log (5)) \text {Li}_2\left (-\frac {e^x}{2}\right )+2 (7+\log (5)) \text {Li}_2\left (-\frac {e^x}{2}\right )+\frac {1}{2} x (25+\log (625)) \text {Li}_2\left (-\frac {e^x}{2}\right )+9 x \text {Li}_3\left (-\frac {e^x}{2}\right )+\frac {3}{2} \int \log \left (1+\frac {e^x}{2}\right ) \, dx-\frac {3}{2} \int \text {Li}_2\left (-\frac {e^x}{2}\right ) \, dx-3 \int \text {Li}_2\left (-\frac {e^x}{2}\right ) \, dx-3 \int \text {Li}_3\left (-\frac {e^x}{2}\right ) \, dx-6 \int \text {Li}_3\left (-\frac {e^x}{2}\right ) \, dx+9 \int x \log \left (1+\frac {e^x}{2}\right ) \, dx-9 \int x \text {Li}_2\left (-\frac {e^x}{2}\right ) \, dx+(2 (4+\log (5))) \operatorname {Subst}\left (\int \frac {\text {Li}_2\left (-\frac {x}{2}\right )}{x} \, dx,x,e^x\right )-\frac {1}{2} (-25-\log (625)) \int \log \left (1+\frac {e^x}{2}\right ) \, dx-\frac {1}{2} (25+\log (625)) \int \text {Li}_2\left (-\frac {e^x}{2}\right ) \, dx\\ &=\frac {3 x^2}{4}-\frac {3 x^2}{2 \left (2+e^x\right )}+\frac {7 x^3}{4}+\frac {x^3}{\left (2+e^x\right )^2}-\frac {2 x^3}{2+e^x}+\frac {1}{3} x^3 (4+\log (5))-x^2 (7+\log (5))+x (7+\log (5))^2+x^2 \left (14+e^{e^{e^3}}+\log (25)\right )+\frac {1}{4} x^2 (25+\log (625))-\frac {x^2 (25+\log (625))}{2 \left (2+e^x\right )}-\frac {1}{12} x^3 (25+\log (625))-\frac {3}{2} x \log \left (1+\frac {e^x}{2}\right )-\frac {9}{4} x^2 \log \left (1+\frac {e^x}{2}\right )-x^2 (4+\log (5)) \log \left (1+\frac {e^x}{2}\right )+2 x (7+\log (5)) \log \left (1+\frac {e^x}{2}\right )-\frac {1}{2} x (25+\log (625)) \log \left (1+\frac {e^x}{2}\right )+\frac {1}{4} x^2 (25+\log (625)) \log \left (1+\frac {e^x}{2}\right )-\frac {9}{2} x \text {Li}_2\left (-\frac {e^x}{2}\right )-2 x (4+\log (5)) \text {Li}_2\left (-\frac {e^x}{2}\right )+2 (7+\log (5)) \text {Li}_2\left (-\frac {e^x}{2}\right )+\frac {1}{2} x (25+\log (625)) \text {Li}_2\left (-\frac {e^x}{2}\right )+2 (4+\log (5)) \text {Li}_3\left (-\frac {e^x}{2}\right )+\frac {3}{2} \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{2}\right )}{x} \, dx,x,e^x\right )-\frac {3}{2} \operatorname {Subst}\left (\int \frac {\text {Li}_2\left (-\frac {x}{2}\right )}{x} \, dx,x,e^x\right )-3 \operatorname {Subst}\left (\int \frac {\text {Li}_2\left (-\frac {x}{2}\right )}{x} \, dx,x,e^x\right )-3 \operatorname {Subst}\left (\int \frac {\text {Li}_3\left (-\frac {x}{2}\right )}{x} \, dx,x,e^x\right )-6 \operatorname {Subst}\left (\int \frac {\text {Li}_3\left (-\frac {x}{2}\right )}{x} \, dx,x,e^x\right )+9 \int \text {Li}_2\left (-\frac {e^x}{2}\right ) \, dx+9 \int \text {Li}_3\left (-\frac {e^x}{2}\right ) \, dx-\frac {1}{2} (-25-\log (625)) \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{2}\right )}{x} \, dx,x,e^x\right )-\frac {1}{2} (25+\log (625)) \operatorname {Subst}\left (\int \frac {\text {Li}_2\left (-\frac {x}{2}\right )}{x} \, dx,x,e^x\right )\\ &=\frac {3 x^2}{4}-\frac {3 x^2}{2 \left (2+e^x\right )}+\frac {7 x^3}{4}+\frac {x^3}{\left (2+e^x\right )^2}-\frac {2 x^3}{2+e^x}+\frac {1}{3} x^3 (4+\log (5))-x^2 (7+\log (5))+x (7+\log (5))^2+x^2 \left (14+e^{e^{e^3}}+\log (25)\right )+\frac {1}{4} x^2 (25+\log (625))-\frac {x^2 (25+\log (625))}{2 \left (2+e^x\right )}-\frac {1}{12} x^3 (25+\log (625))-\frac {3}{2} x \log \left (1+\frac {e^x}{2}\right )-\frac {9}{4} x^2 \log \left (1+\frac {e^x}{2}\right )-x^2 (4+\log (5)) \log \left (1+\frac {e^x}{2}\right )+2 x (7+\log (5)) \log \left (1+\frac {e^x}{2}\right )-\frac {1}{2} x (25+\log (625)) \log \left (1+\frac {e^x}{2}\right )+\frac {1}{4} x^2 (25+\log (625)) \log \left (1+\frac {e^x}{2}\right )-\frac {3}{2} \text {Li}_2\left (-\frac {e^x}{2}\right )-\frac {9}{2} x \text {Li}_2\left (-\frac {e^x}{2}\right )-2 x (4+\log (5)) \text {Li}_2\left (-\frac {e^x}{2}\right )+2 (7+\log (5)) \text {Li}_2\left (-\frac {e^x}{2}\right )-\frac {1}{2} (25+\log (625)) \text {Li}_2\left (-\frac {e^x}{2}\right )+\frac {1}{2} x (25+\log (625)) \text {Li}_2\left (-\frac {e^x}{2}\right )-\frac {9}{2} \text {Li}_3\left (-\frac {e^x}{2}\right )+2 (4+\log (5)) \text {Li}_3\left (-\frac {e^x}{2}\right )-\frac {1}{2} (25+\log (625)) \text {Li}_3\left (-\frac {e^x}{2}\right )-9 \text {Li}_4\left (-\frac {e^x}{2}\right )+9 \operatorname {Subst}\left (\int \frac {\text {Li}_2\left (-\frac {x}{2}\right )}{x} \, dx,x,e^x\right )+9 \operatorname {Subst}\left (\int \frac {\text {Li}_3\left (-\frac {x}{2}\right )}{x} \, dx,x,e^x\right )\\ &=\frac {3 x^2}{4}-\frac {3 x^2}{2 \left (2+e^x\right )}+\frac {7 x^3}{4}+\frac {x^3}{\left (2+e^x\right )^2}-\frac {2 x^3}{2+e^x}+\frac {1}{3} x^3 (4+\log (5))-x^2 (7+\log (5))+x (7+\log (5))^2+x^2 \left (14+e^{e^{e^3}}+\log (25)\right )+\frac {1}{4} x^2 (25+\log (625))-\frac {x^2 (25+\log (625))}{2 \left (2+e^x\right )}-\frac {1}{12} x^3 (25+\log (625))-\frac {3}{2} x \log \left (1+\frac {e^x}{2}\right )-\frac {9}{4} x^2 \log \left (1+\frac {e^x}{2}\right )-x^2 (4+\log (5)) \log \left (1+\frac {e^x}{2}\right )+2 x (7+\log (5)) \log \left (1+\frac {e^x}{2}\right )-\frac {1}{2} x (25+\log (625)) \log \left (1+\frac {e^x}{2}\right )+\frac {1}{4} x^2 (25+\log (625)) \log \left (1+\frac {e^x}{2}\right )-\frac {3}{2} \text {Li}_2\left (-\frac {e^x}{2}\right )-\frac {9}{2} x \text {Li}_2\left (-\frac {e^x}{2}\right )-2 x (4+\log (5)) \text {Li}_2\left (-\frac {e^x}{2}\right )+2 (7+\log (5)) \text {Li}_2\left (-\frac {e^x}{2}\right )-\frac {1}{2} (25+\log (625)) \text {Li}_2\left (-\frac {e^x}{2}\right )+\frac {1}{2} x (25+\log (625)) \text {Li}_2\left (-\frac {e^x}{2}\right )+\frac {9}{2} \text {Li}_3\left (-\frac {e^x}{2}\right )+2 (4+\log (5)) \text {Li}_3\left (-\frac {e^x}{2}\right )-\frac {1}{2} (25+\log (625)) \text {Li}_3\left (-\frac {e^x}{2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 51, normalized size = 1.59 \begin {gather*} x \left (x^2+\frac {x^2}{\left (2+e^x\right )^2}+(7+\log (5))^2-\frac {2 x (7+x+\log (5))}{2+e^x}+x \left (14+e^{e^{e^3}}+\log (25)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.67, size = 138, normalized size = 4.31 \begin {gather*} \frac {x^{3} + 4 \, x \log \relax (5)^{2} + 28 \, x^{2} + {\left (x^{3} + x \log \relax (5)^{2} + 14 \, x^{2} + 2 \, {\left (x^{2} + 7 \, x\right )} \log \relax (5) + 49 \, x\right )} e^{\left (2 \, x\right )} + 2 \, {\left (x^{3} + 2 \, x \log \relax (5)^{2} + 21 \, x^{2} + {\left (3 \, x^{2} + 28 \, x\right )} \log \relax (5) + 98 \, x\right )} e^{x} + {\left (x^{2} e^{\left (2 \, x\right )} + 4 \, x^{2} e^{x} + 4 \, x^{2}\right )} e^{\left (e^{\left (e^{3}\right )}\right )} + 4 \, {\left (x^{2} + 14 \, x\right )} \log \relax (5) + 196 \, x}{e^{\left (2 \, x\right )} + 4 \, e^{x} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.51, size = 174, normalized size = 5.44 \begin {gather*} \frac {x^{3} e^{\left (2 \, x\right )} + 2 \, x^{3} e^{x} + 2 \, x^{2} e^{\left (2 \, x\right )} \log \relax (5) + 6 \, x^{2} e^{x} \log \relax (5) + x e^{\left (2 \, x\right )} \log \relax (5)^{2} + 4 \, x e^{x} \log \relax (5)^{2} + x^{3} + 14 \, x^{2} e^{\left (2 \, x\right )} + x^{2} e^{\left (2 \, x + e^{\left (e^{3}\right )}\right )} + 4 \, x^{2} e^{\left (x + e^{\left (e^{3}\right )}\right )} + 42 \, x^{2} e^{x} + 4 \, x^{2} e^{\left (e^{\left (e^{3}\right )}\right )} + 4 \, x^{2} \log \relax (5) + 14 \, x e^{\left (2 \, x\right )} \log \relax (5) + 56 \, x e^{x} \log \relax (5) + 4 \, x \log \relax (5)^{2} + 28 \, x^{2} + 49 \, x e^{\left (2 \, x\right )} + 196 \, x e^{x} + 56 \, x \log \relax (5) + 196 \, x}{e^{\left (2 \, x\right )} + 4 \, e^{x} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.38, size = 74, normalized size = 2.31
method | result | size |
risch | \(x^{2} {\mathrm e}^{{\mathrm e}^{{\mathrm e}^{3}}}+x \ln \relax (5)^{2}+2 x^{2} \ln \relax (5)+x^{3}+14 x \ln \relax (5)+14 x^{2}+49 x -\frac {x^{2} \left (2 \,{\mathrm e}^{x} \ln \relax (5)+2 \,{\mathrm e}^{x} x +4 \ln \relax (5)+3 x +14 \,{\mathrm e}^{x}+28\right )}{\left ({\mathrm e}^{x}+2\right )^{2}}\) | \(74\) |
norman | \(\frac {x^{3}+\left (28+4 \,{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{3}}}+4 \ln \relax (5)\right ) x^{2}+\left (4 \ln \relax (5)^{2}+56 \ln \relax (5)+196\right ) x +{\mathrm e}^{2 x} x^{3}+\left (14+{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{3}}}+2 \ln \relax (5)\right ) x^{2} {\mathrm e}^{2 x}+\left (42+4 \,{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{3}}}+6 \ln \relax (5)\right ) x^{2} {\mathrm e}^{x}+\left (49+\ln \relax (5)^{2}+14 \ln \relax (5)\right ) x \,{\mathrm e}^{2 x}+\left (4 \ln \relax (5)^{2}+56 \ln \relax (5)+196\right ) x \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x} x^{3}}{\left ({\mathrm e}^{x}+2\right )^{2}}\) | \(125\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.81, size = 207, normalized size = 6.47 \begin {gather*} {\left (x + \frac {2 \, {\left (e^{x} + 3\right )}}{e^{\left (2 \, x\right )} + 4 \, e^{x} + 4} - \log \left (e^{x} + 2\right )\right )} \log \relax (5)^{2} + 14 \, {\left (x + \frac {2 \, {\left (e^{x} + 3\right )}}{e^{\left (2 \, x\right )} + 4 \, e^{x} + 4} - \log \left (e^{x} + 2\right )\right )} \log \relax (5) + {\left (\log \relax (5)^{2} + 14 \, \log \relax (5) + 49\right )} \log \left (e^{x} + 2\right ) + 49 \, x + \frac {x^{3} + 4 \, x^{2} {\left (e^{\left (e^{\left (e^{3}\right )}\right )} + \log \relax (5) + 7\right )} + {\left (x^{3} + x^{2} {\left (e^{\left (e^{\left (e^{3}\right )}\right )} + 2 \, \log \relax (5) + 14\right )}\right )} e^{\left (2 \, x\right )} + 2 \, {\left (x^{3} + x^{2} {\left (2 \, e^{\left (e^{\left (e^{3}\right )}\right )} + 3 \, \log \relax (5) + 21\right )} - \log \relax (5)^{2} - 14 \, \log \relax (5) - 49\right )} e^{x} - 6 \, \log \relax (5)^{2} - 84 \, \log \relax (5) - 294}{e^{\left (2 \, x\right )} + 4 \, e^{x} + 4} + \frac {98 \, {\left (e^{x} + 3\right )}}{e^{\left (2 \, x\right )} + 4 \, e^{x} + 4} - 49 \, \log \left (e^{x} + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.57, size = 126, normalized size = 3.94 \begin {gather*} \frac {2\,x^3\,{\mathrm {e}}^x+x\,\left (56\,\ln \relax (5)+4\,{\ln \relax (5)}^2+196\right )+x^3\,{\mathrm {e}}^{2\,x}+x^2\,\left (4\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^3}}+\ln \left (625\right )+28\right )+x^3+x\,{\mathrm {e}}^{2\,x}\,\left (14\,\ln \relax (5)+{\ln \relax (5)}^2+49\right )+x\,{\mathrm {e}}^x\,\left (56\,\ln \relax (5)+4\,{\ln \relax (5)}^2+196\right )+x^2\,{\mathrm {e}}^{2\,x}\,\left ({\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^3}}+\ln \left (25\right )+14\right )+x^2\,{\mathrm {e}}^x\,\left (4\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^3}}+6\,\ln \relax (5)+42\right )}{{\mathrm {e}}^{2\,x}+4\,{\mathrm {e}}^x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.22, size = 87, normalized size = 2.72 \begin {gather*} x^{3} + x^{2} \left (2 \log {\relax (5 )} + 14 + e^{e^{e^{3}}}\right ) + x \left (\log {\relax (5 )}^{2} + 14 \log {\relax (5 )} + 49\right ) + \frac {- 3 x^{3} - 28 x^{2} - 4 x^{2} \log {\relax (5 )} + \left (- 2 x^{3} - 14 x^{2} - 2 x^{2} \log {\relax (5 )}\right ) e^{x}}{e^{2 x} + 4 e^{x} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________