Optimal. Leaf size=24 \[ -x+\frac {x}{1+e^2}+24 \log \left (\frac {x}{4}+\log (3)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 21, normalized size of antiderivative = 0.88, number of steps used = 4, number of rules used = 3, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {6, 186, 43} \begin {gather*} 24 \log (x+\log (81))-\frac {e^2 x}{1+e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 43
Rule 186
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {24+e^2 (24-x)-4 e^2 \log (3)}{\left (1+e^2\right ) x+\left (4+4 e^2\right ) \log (3)} \, dx\\ &=\int \frac {-e^2 x+4 \left (6+e^2 (6-\log (3))\right )}{\left (1+e^2\right ) x+4 \left (1+e^2\right ) \log (3)} \, dx\\ &=\int \left (-\frac {e^2}{1+e^2}+\frac {24}{x+\log (81)}\right ) \, dx\\ &=-\frac {e^2 x}{1+e^2}+24 \log (x+\log (81))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 30, normalized size = 1.25 \begin {gather*} \frac {-e^2 (x+\log (81))+24 \left (1+e^2\right ) \log (x+\log (81))}{1+e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 26, normalized size = 1.08 \begin {gather*} -\frac {x e^{2} - 24 \, {\left (e^{2} + 1\right )} \log \left (x + 4 \, \log \relax (3)\right )}{e^{2} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.35, size = 22, normalized size = 0.92 \begin {gather*} -\frac {x e^{2}}{e^{2} + 1} + 24 \, \log \left ({\left | x + 4 \, \log \relax (3) \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 22, normalized size = 0.92
method | result | size |
norman | \(-\frac {{\mathrm e}^{2} x}{{\mathrm e}^{2}+1}+24 \ln \left (4 \ln \relax (3)+x \right )\) | \(22\) |
risch | \(-\frac {{\mathrm e}^{2} x}{{\mathrm e}^{2}+1}+24 \ln \left (4 \ln \relax (3)+x \right )\) | \(22\) |
default | \(\frac {-{\mathrm e}^{2} x +\left (24 \,{\mathrm e}^{2}+24\right ) \ln \left (4 \ln \relax (3)+x \right )}{{\mathrm e}^{2}+1}\) | \(28\) |
meijerg | \(\frac {24 \ln \left (1+\frac {x}{4 \ln \relax (3)}\right )}{{\mathrm e}^{2}+1}-\frac {4 \,{\mathrm e}^{2} \ln \relax (3) \ln \left (1+\frac {x}{4 \ln \relax (3)}\right )}{{\mathrm e}^{2}+1}-\frac {4 \,{\mathrm e}^{2} \ln \relax (3) \left (\frac {x}{4 \ln \relax (3)}-\ln \left (1+\frac {x}{4 \ln \relax (3)}\right )\right )}{{\mathrm e}^{2}+1}+\frac {24 \,{\mathrm e}^{2} \ln \left (1+\frac {x}{4 \ln \relax (3)}\right )}{{\mathrm e}^{2}+1}\) | \(94\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 21, normalized size = 0.88 \begin {gather*} -\frac {x e^{2}}{e^{2} + 1} + 24 \, \log \left (x + 4 \, \log \relax (3)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.15, size = 19, normalized size = 0.79 \begin {gather*} 24\,\ln \left (x+\ln \left (81\right )\right )-\frac {x\,{\mathrm {e}}^2}{{\mathrm {e}}^2+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 19, normalized size = 0.79 \begin {gather*} - \frac {x e^{2}}{1 + e^{2}} + 24 \log {\left (x + 4 \log {\relax (3 )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________