Optimal. Leaf size=32 \[ 3+\left (e^{-5+\frac {x \left (-4+\frac {1}{2} \left (-5 e^3+x\right )\right )}{\log (\log (x))}}+x^2\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 3.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x^3 \log (x) \log ^2(\log (x))+\exp \left (\frac {-8 x-5 e^3 x+x^2-10 \log (\log (x))}{\log (\log (x))}\right ) \left (8+5 e^3-x+\left (-8-5 e^3+2 x\right ) \log (x) \log (\log (x))\right )+\exp \left (\frac {-8 x-5 e^3 x+x^2-10 \log (\log (x))}{2 \log (\log (x))}\right ) \left (8 x^2+5 e^3 x^2-x^3+\left (-8 x^2-5 e^3 x^2+2 x^3\right ) \log (x) \log (\log (x))+4 x \log (x) \log ^2(\log (x))\right )}{\log (x) \log ^2(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (4 x^3+\frac {e^{-10+\frac {x \left (-8-5 e^3+x\right )}{\log (\log (x))}} \left (8 \left (1+\frac {5 e^3}{8}\right )-x-8 \left (1+\frac {5 e^3}{8}\right ) \log (x) \log (\log (x))+2 x \log (x) \log (\log (x))\right )}{\log (x) \log ^2(\log (x))}+\frac {e^{-5+\frac {x \left (-8-5 e^3+x\right )}{2 \log (\log (x))}} x \left (8 \left (1+\frac {5 e^3}{8}\right ) x-x^2-8 \left (1+\frac {5 e^3}{8}\right ) x \log (x) \log (\log (x))+2 x^2 \log (x) \log (\log (x))+4 \log (x) \log ^2(\log (x))\right )}{\log (x) \log ^2(\log (x))}\right ) \, dx\\ &=x^4+\int \frac {e^{-10+\frac {x \left (-8-5 e^3+x\right )}{\log (\log (x))}} \left (8 \left (1+\frac {5 e^3}{8}\right )-x-8 \left (1+\frac {5 e^3}{8}\right ) \log (x) \log (\log (x))+2 x \log (x) \log (\log (x))\right )}{\log (x) \log ^2(\log (x))} \, dx+\int \frac {e^{-5+\frac {x \left (-8-5 e^3+x\right )}{2 \log (\log (x))}} x \left (8 \left (1+\frac {5 e^3}{8}\right ) x-x^2-8 \left (1+\frac {5 e^3}{8}\right ) x \log (x) \log (\log (x))+2 x^2 \log (x) \log (\log (x))+4 \log (x) \log ^2(\log (x))\right )}{\log (x) \log ^2(\log (x))} \, dx\\ &=x^4+\frac {2 e^{-5-\frac {\left (8+5 e^3-x\right ) x}{2 \log (\log (x))}} x \left (\left (8+5 e^3\right ) x-x^2-\left (8+5 e^3\right ) x \log (x) \log (\log (x))+2 x^2 \log (x) \log (\log (x))\right )}{\log (x) \left (\frac {8+5 e^3-x}{\log (x) \log ^2(\log (x))}-\frac {8+5 e^3-x}{\log (\log (x))}+\frac {x}{\log (\log (x))}\right ) \log ^2(\log (x))}+\int \left (\frac {e^{-10+\frac {x \left (-8-5 e^3+x\right )}{\log (\log (x))}} \left (8+5 e^3-x\right )}{\log (x) \log ^2(\log (x))}+\frac {e^{-10+\frac {x \left (-8-5 e^3+x\right )}{\log (\log (x))}} \left (-8-5 e^3+2 x\right )}{\log (\log (x))}\right ) \, dx\\ &=x^4+\frac {2 e^{-5-\frac {\left (8+5 e^3-x\right ) x}{2 \log (\log (x))}} x \left (\left (8+5 e^3\right ) x-x^2-\left (8+5 e^3\right ) x \log (x) \log (\log (x))+2 x^2 \log (x) \log (\log (x))\right )}{\log (x) \left (\frac {8+5 e^3-x}{\log (x) \log ^2(\log (x))}-\frac {8+5 e^3-x}{\log (\log (x))}+\frac {x}{\log (\log (x))}\right ) \log ^2(\log (x))}+\int \frac {e^{-10+\frac {x \left (-8-5 e^3+x\right )}{\log (\log (x))}} \left (8+5 e^3-x\right )}{\log (x) \log ^2(\log (x))} \, dx+\int \frac {e^{-10+\frac {x \left (-8-5 e^3+x\right )}{\log (\log (x))}} \left (-8-5 e^3+2 x\right )}{\log (\log (x))} \, dx\\ &=x^4+\frac {2 e^{-5-\frac {\left (8+5 e^3-x\right ) x}{2 \log (\log (x))}} x \left (\left (8+5 e^3\right ) x-x^2-\left (8+5 e^3\right ) x \log (x) \log (\log (x))+2 x^2 \log (x) \log (\log (x))\right )}{\log (x) \left (\frac {8+5 e^3-x}{\log (x) \log ^2(\log (x))}-\frac {8+5 e^3-x}{\log (\log (x))}+\frac {x}{\log (\log (x))}\right ) \log ^2(\log (x))}+\int \left (\frac {8 e^{-10+\frac {x \left (-8-5 e^3+x\right )}{\log (\log (x))}} \left (1+\frac {5 e^3}{8}\right )}{\log (x) \log ^2(\log (x))}-\frac {e^{-10+\frac {x \left (-8-5 e^3+x\right )}{\log (\log (x))}} x}{\log (x) \log ^2(\log (x))}\right ) \, dx+\int \left (-\frac {8 e^{-10+\frac {x \left (-8-5 e^3+x\right )}{\log (\log (x))}} \left (1+\frac {5 e^3}{8}\right )}{\log (\log (x))}+\frac {2 e^{-10+\frac {x \left (-8-5 e^3+x\right )}{\log (\log (x))}} x}{\log (\log (x))}\right ) \, dx\\ &=x^4+\frac {2 e^{-5-\frac {\left (8+5 e^3-x\right ) x}{2 \log (\log (x))}} x \left (\left (8+5 e^3\right ) x-x^2-\left (8+5 e^3\right ) x \log (x) \log (\log (x))+2 x^2 \log (x) \log (\log (x))\right )}{\log (x) \left (\frac {8+5 e^3-x}{\log (x) \log ^2(\log (x))}-\frac {8+5 e^3-x}{\log (\log (x))}+\frac {x}{\log (\log (x))}\right ) \log ^2(\log (x))}+2 \int \frac {e^{-10+\frac {x \left (-8-5 e^3+x\right )}{\log (\log (x))}} x}{\log (\log (x))} \, dx+\left (8+5 e^3\right ) \int \frac {e^{-10+\frac {x \left (-8-5 e^3+x\right )}{\log (\log (x))}}}{\log (x) \log ^2(\log (x))} \, dx-\left (8+5 e^3\right ) \int \frac {e^{-10+\frac {x \left (-8-5 e^3+x\right )}{\log (\log (x))}}}{\log (\log (x))} \, dx-\int \frac {e^{-10+\frac {x \left (-8-5 e^3+x\right )}{\log (\log (x))}} x}{\log (x) \log ^2(\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 62, normalized size = 1.94 \begin {gather*} e^{-10-\frac {\left (8+5 e^3\right ) x}{\log (\log (x))}} \left (e^{\frac {x^2}{2 \log (\log (x))}}+e^{5+\frac {\left (8+5 e^3\right ) x}{2 \log (\log (x))}} x^2\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 58, normalized size = 1.81 \begin {gather*} x^{4} + 2 \, x^{2} e^{\left (\frac {x^{2} - 5 \, x e^{3} - 8 \, x - 10 \, \log \left (\log \relax (x)\right )}{2 \, \log \left (\log \relax (x)\right )}\right )} + e^{\left (\frac {x^{2} - 5 \, x e^{3} - 8 \, x - 10 \, \log \left (\log \relax (x)\right )}{\log \left (\log \relax (x)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.19, size = 64, normalized size = 2.00
method | result | size |
risch | \(x^{4}+2 x^{2} {\mathrm e}^{-\frac {5 x \,{\mathrm e}^{3}-x^{2}+10 \ln \left (\ln \relax (x )\right )+8 x}{2 \ln \left (\ln \relax (x )\right )}}+{\mathrm e}^{-\frac {5 x \,{\mathrm e}^{3}-x^{2}+10 \ln \left (\ln \relax (x )\right )+8 x}{\ln \left (\ln \relax (x )\right )}}\) | \(64\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.05, size = 75, normalized size = 2.34 \begin {gather*} x^4+{\mathrm {e}}^{\frac {x^2}{\ln \left (\ln \relax (x)\right )}}\,{\mathrm {e}}^{-\frac {5\,x\,{\mathrm {e}}^3}{\ln \left (\ln \relax (x)\right )}}\,{\mathrm {e}}^{-10}\,{\mathrm {e}}^{-\frac {8\,x}{\ln \left (\ln \relax (x)\right )}}+2\,x^2\,{\mathrm {e}}^{\frac {x^2}{2\,\ln \left (\ln \relax (x)\right )}}\,{\mathrm {e}}^{-\frac {5\,x\,{\mathrm {e}}^3}{2\,\ln \left (\ln \relax (x)\right )}}\,{\mathrm {e}}^{-5}\,{\mathrm {e}}^{-\frac {4\,x}{\ln \left (\ln \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 10.18, size = 65, normalized size = 2.03 \begin {gather*} x^{4} + 2 x^{2} e^{\frac {\frac {x^{2}}{2} - \frac {5 x e^{3}}{2} - 4 x - 5 \log {\left (\log {\relax (x )} \right )}}{\log {\left (\log {\relax (x )} \right )}}} + e^{\frac {2 \left (\frac {x^{2}}{2} - \frac {5 x e^{3}}{2} - 4 x - 5 \log {\left (\log {\relax (x )} \right )}\right )}{\log {\left (\log {\relax (x )} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________